Skip to content

Latest commit

 

History

History
282 lines (230 loc) · 11.6 KB

File metadata and controls

282 lines (230 loc) · 11.6 KB

General algorithm of the Embedded Runge—Kutta method

Below I will describe an algorithm for solving IVP by any Embedded Runge—Kutta method of any order for any dimensionality of the system based on algorithm I have implemented in General-algorithm-of-the-explicit-Runge-Kutta-method. I haven't implemented adaptive step size here, maybe I'll do it in a while. Here are two scripts — for a method with and without FSAL property. The FSAL (First Same As Last) property means that if the same function evaluations (or calculations) are required at the start point of a step and at the end point of the next step, the function value calculated at the end point of the current step can be reused as the initial value for the next step without having to recalculate it. The output, compared to my algorithm for explicit methods, only adds an array with the estimates of local errors (ELE).

Table of Contents

Embedded Runge—Kutta methods. Butcher tableau

Let an initial value problem (IVP) be specified as follows:

$$ \dot{\mathbf{x}}=\mathbf{f}\left(t,\mathbf{x}\right),\quad t \in \left[t_0,t_\text{end}\right],\quad \mathbf{x}\left(t_0\right) = \mathbf{x}_0 \in \mathbb{R}^m. $$

where $\mathbf{x}=\left[x_1,\dots,x_m\right]^\mathbf{T},\quad \mathbf{f}\left(t,\mathbf{x}\right)=\left[f_1\left(t,x_1,\dots,x_n\right),\dots,f_m\left(t,x_1,\dots,x_n\right)\right]^\mathbf{T}.$

The idea behind the Embedded Runge—Kutta methods is to provide two approximations: $\mathbf{x}_{n+1}$ and $\mathbf{\hat{x}}_{n+1}$, such that

$$ \mathbf{x}_{n+1} = \mathbf{x}_n+\tau_n\mathbf{K}^{(n)}\mathbf{b}, $$

is of order $p$, and

$$ \mathbf{\hat{x}}_{n+1} = \mathbf{x}_n+\tau_n\mathbf{K}^{(n)}\mathbf{\hat{b}}, $$

is of order $\hat{p}$.

The difference between them gives an estimate of the local error for a less accurate result and can be used to control the step size:

$$ \text{ELE}_{n+1} = \varepsilon_{n+1} = \left\lVert\mathbf{\hat{x}}_{n+1}- \mathbf{x}_{n+1}\right\rVert_\infty=\left\lVert \mathbf{x}_n+\tau_n\mathbf{K}^{(n)}\mathbf{\hat{b}}-\left(\mathbf{x}_n+\tau_n\mathbf{K}^{(n)}\mathbf{b}\right)\right\rVert_\infty=\left\lVert \tau_n\mathbf{K}^{(n)}\mathbf{d}\right\rVert_\infty. $$

The approximation $\mathbf{x}_{n+1}$ is used to continue the integration.

Butcher tableau for the $s$-stage Embedded Runge—Kutta methods represented as follows:

$$ \begin{array}{r|c} \mathbf{c} & \mathbf{A} \\ \hline & \mathbf{b}^{\mathbf{T}} \\ & \mathbf{\hat{b}}^{\mathbf{T}} \\ \hline & \mathbf{d}^{\mathbf{T}} \end{array} \quad \Rightarrow \quad \begin{array}{r|ccccc} 0 & & & & \\ c_2 & a_{2,1} & & & \\ c_3 & a_{3,1} & a_{3,2} & & \\ \vdots& \vdots & \vdots & \ddots & \\ c_s & a_{s,1} & a_{s,2} & \cdots & a_{s,s-1} \\ \hline & b_1 & b_2 & \cdots & b_{s-1} & b_s \\ & \hat{b}_1 & \hat{b}_2 & \cdots & \hat{b}_{s-1} & \hat{b}_s \\ \hline & d_1 & d_2 & \cdots & d_{s-1} & d_s \end{array}, $$

$$ \mathbf{d} = \mathbf{\hat{b}} - \mathbf{b}, $$

$$ \mathbf{c},\mathbf{b},\mathbf{\hat{b}}, \mathbf{d}\in \mathbb{R}^s,\quad \mathbf{A} \in \mathbb{R}^{s\times s}. $$

Description of the implemented algorithm

The procedure for filling the matrix is identical as in my algorithm for Explicit Runge—Kutta methods. At each iteration (also take a look here) we need to initialize the matrix $\mathbf{K}^{(n)}$ of the corresponding size as a zero matrix and this matrix is interpreted as follows:

$$ \mathbf{K}^{(n)}_{m\times s}=\left[\mathbf{k}_1^{(n)},\mathbf{k}_2^{(n)},\ldots,\mathbf{k}_s^{(n)}\right]=\mathbf{0}_{m\times s}, $$

and the matrix $\mathbf{A}$ as

$$ \mathbf{A}_{s\times s} = \begin{bmatrix} \mathbf{a}^{(1)\mathbf{T}} \\ \mathbf{a}^{(2)\mathbf{T}} \\ \vdots \\ \mathbf{a}^{(s)\mathbf{T}} \end{bmatrix}. $$

Then the formulas for filling the matrix $\mathbf{K}^{(n)}$ can be represented as follows:

$$ \begin{cases} \mathbf{k}_{1}^{(n)} = \mathbf{f}\left(t_n,\mathbf{x}_n\right),\\ \vdots\\ \mathbf{k}_{i}^{(n)} = \mathbf{f}\left(t_n + c_i \tau, \mathbf{x}_n + \tau\mathbf{K}^{(n)}_{m\times i-1}\mathbf{a}_{i-1\times 1}^{(i)}\right), \end{cases} $$

$$ i=\overline{2,s}. $$

Example

The ExampleOfUse.mlx file shows the obtaining of The Lotka—Volterra Attractor

$$ \begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t}=x-xy+\varsigma x^2-\alpha z x^2, \\ \frac{\mathrm{d}y}{\mathrm{d}t}=-y+xy, \\ \frac{\mathrm{d}z}{\mathrm{d}t}=-\beta z +\alpha z x^2, \end{cases} $$

$$ \begin{bmatrix} \alpha\\ \beta\\ \varsigma \end{bmatrix}= \begin{bmatrix} 2.9851\\ 3\\ 2 \end{bmatrix}, $$

and The TSUCS2 Attractor

$$ \begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = \alpha\left(y-x\right)+\delta xz, \\ \frac{\mathrm{d}y}{\mathrm{d}t} = \varsigma x-xz+\xi y, \\ \frac{\mathrm{d}z}{\mathrm{d}t} = \beta z+xy-\varepsilon x^2, \end{cases} $$

$$ \begin{bmatrix} \alpha\\ \beta\\ \varsigma\\ \delta\\ \varepsilon\\ \xi \end{bmatrix} = \begin{bmatrix} 40\\ 1.833\\ 55\\ 0.16\\ 20\\ 0.65 \end{bmatrix}. $$

Verner's method of order 6(5) (DVERK)

The Lotka—Volterra Attractor has been obtained using DVERK method, which has no FSAL propety, so it's important to use the odeEmbeddedGeneral (odeEmbeddedGeneral_optimized) function.

The Lotka—Volterra Attractor

Dormand—Prince method of order 5(4) (RK5(4)7M)

The TSUCS2 Attractor has been obtained using RK5(4)7M method, which has FSAL propety, so it's recommended to use odeFSALEmbeddedGeneral (odeFSALEmbeddedGeneral_optimized), which takes this property into account, but it's also possible to use odeEmbeddedGeneral (odeEmbeddedGeneral_optimized) function, only in this case FSAL won't be taken into account.

The TSUCS2 Attractor

Notes

Input Arguments

  • c_vector: vector of coefficients $\mathbf{c}$ of Butcher tableau for the selected method;
  • A_matrix: matrix of coefficients $\mathbf{A}$ of Butcher tableau for the selected method;
  • b_vector: vector of coefficients $\mathbf{b}$ of Butcher tableau for the selected method;
  • b_hat_vector: vector of coefficients $\mathbf{\hat{b}}$ of Butcher tableau for the selected method;
  • odefun: functions to solve, specified as a function handle that defines the functions to be integrated;
  • tspan: interval of integration, specified as a two-element vector;
  • tau: time discretization step;
  • incond: vector of initial conditions.

Output Arguments

  • t: vector of evaluation points used to perform the integration;
  • xsol: solution matrix in which each row corresponds to a solution at the value returned in the corresponding row of t.
  • ELE: local errors vector in which each row corresponds to a estimated local error at the value returned in the corresponding row of t.

About Optimized Scripts

The codes from the odeEmbeddedGeneral.m & odeFSALEmbeddedGeneral.m scripts shows a more illustrative integration procedure, for understanding from a theoretical point of view. The optimized versions of these scripts odeEmbeddedGeneral_optimized.m & odeFSALEmbeddedGeneral_optimized.m look as follows:

function [t, xsol, ELE] = odeEmbeddedGeneral_optimized(c_vector, A_matrix, b_vector, b_hat_vector, odefun, tspan, tau, incond)

s_stages = length(c_vector);
m = length(incond);

c_vector = reshape(c_vector, [s_stages 1]);
b_vector = reshape(b_vector, [s_stages 1]);
b_hat_vector = reshape(b_hat_vector, [s_stages 1]);
d_vector = b_hat_vector - b_vector;
incond = reshape(incond, [m 1]);

t = (tspan(1) : tau : tspan(2))';
xsol = zeros(length(incond), length(t));
xsol(:, 1) = incond(:);
K_matrix = zeros(m, s_stages);
ELE = zeros(length(t), 1);

for n = 1:length(t)-1
    K_matrix(:, 1) = odefun(t(n), xsol(:, n));   
        for i = 2:s_stages
            K_matrix(:, i) = odefun(t(n) + tau * c_vector(i), xsol(:, n) + tau * K_matrix(:, 1:i-1) * A_matrix(i, 1:i-1)');
        end
    xsol(:, n+1) = xsol(:, n) + tau * K_matrix * b_vector;
    ELE(n+1) = norm(tau * K_matrix * d_vector, "inf");
end
xsol = xsol';
end
function [t, xsol, ELE] = odeFSALEmbeddedGeneral_optimized(c_vector, A_matrix, b_vector, b_hat_vector, odefun, tspan, tau, incond)

s_stages = length(c_vector);
m = length(incond);

c_vector = reshape(c_vector, [s_stages 1]);
b_vector = reshape(b_vector, [s_stages 1]);
b_hat_vector = reshape(b_hat_vector, [s_stages 1]);
d_vector = b_hat_vector - b_vector;
incond = reshape(incond, [m 1]);

t = (tspan(1) : tau : tspan(2))';
xsol = zeros(length(incond), length(t));
xsol(:, 1) = incond(:);
K_matrix = zeros(m, s_stages);
ELE = zeros(length(t), 1);
K_matrix(:, s_stages) = odefun(t(1), xsol(:, 1));

for n = 1:length(t)-1
    K_matrix(:, 1) = K_matrix(:, s_stages);
        for i = 2:s_stages
            K_matrix(:, i) = odefun(t(n) + tau * c_vector(i), xsol(:, n) + tau * K_matrix(:, 1:i-1) * A_matrix(i, 1:i-1)');
        end
    xsol(:, n+1) = xsol(:, n) + tau * K_matrix * b_vector;
    ELE(n+1) = norm(tau * K_matrix * d_vector, "inf");
end
xsol = xsol';
end

With only 27 & 28 lines for such a powerful instrument, it looks awesome, doesn't it?

Here no unnecessary variables are created, and the K_matrix is initialized as zero matrix only once, because the algorithm allows not to fill it with zeros at each iteration, but just to overwrite the columns at this iteration without using the columns with coeficients from the previous one:

K_matrix(:, i) = odefun(t(n) + tau * c_vector(i), xsol(:, n) + tau * K_matrix(:, 1:i-1) * A_matrix(i, 1:i-1)')

Planned Features

  • based on this script, add specific integrators, as I did here with the Runge-Kutta method of order 4.
  • add adaptive step size.

References

  1. Butcher, J. (2016). Numerical methods for ordinary differential equations. https://doi.org/10.1002/9781119121534
  2. Hairer, E., Nørsett, S. P., & Wanner, G. (1993). Solving Ordinary Differential Equations I: Nonstiff Problems (2nd ed.). Springer. https://doi.org/10.1007/978-3-540-78862-1
  3. Dormand, J. R., & Prince, P. J. (1980). A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics, 6(1), 19–26. https://doi.org/10.1016/0771-050x(80)90013-3
  4. Samardzija, N., & Greller, L. D. (1988). Explosive route to chaos through a fractal torus in a generalized Lotka-Volterra model. Bulletin of Mathematical Biology, 50(5), 465–491. https://doi.org/10.1007/BF02458847
  5. Li, D. (2008). A three-scroll chaotic attractor. Physics Letters A, 372(4), 387–393. https://doi.org/10.1016/j.physleta.2007.07.045