-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathinterpolate.py
161 lines (122 loc) · 5.37 KB
/
interpolate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import argparse
import importlib
import os
import shutil
import time
import random
import torch
import torchvision
import numpy as np
import cv2 as cv
import pickle
from PIL import Image
from dataset.dataset_splitter import DatasetSplitter
from dataset.transforms import TransformsGenerator
from dataset.video_dataset import VideoDataset
from evaluation.evaluator import Evaluator
from training.trainer import Trainer
from utils.configuration import Configuration
from utils.input_helper import InputHelper
from utils.logger import Logger
from utils.save_video_ffmpeg import VideoSaver
save_directory = "interpolation_results"
image_extension = "png"
interpolation_steps_count = 10
frames_count = 10
zoom_factor = 10
framerate = 5
if __name__ == "__main__":
# Loads configuration file
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
arguments = parser.parse_args()
config_path = arguments.config
configuration = Configuration(config_path)
configuration.check_config()
configuration.create_directory_structure()
config = configuration.get_config()
logger = Logger(config)
search_name = config["model"]["architecture"]
model = getattr(importlib.import_module(search_name), 'model')(config)
model.cuda()
datasets = {}
dataset_splits = DatasetSplitter.generate_splits(config)
transformations = TransformsGenerator.get_final_transforms(config)
for key in dataset_splits:
path, batching_config, split = dataset_splits[key]
transform = transformations[key]
datasets[key] = VideoDataset(path, batching_config, transform, split)
trainer = Trainer(config, model, datasets["train"], logger)
evaluator = Evaluator(config, datasets["validation"], logger, action_sampler=None, logger_prefix="validation")
# Resume training
try:
trainer.load_checkpoint(model)
except Exception as e:
logger.print(e)
logger.print("Cannot play without loading checkpoint")
exit(1)
model.eval()
dataloader = evaluator.dataloader # Uses validation dataloader
#dataset_index = int(input(f"- Insert start sample index in [0, {len(dataloader)}): "))
dataset_index = 0
# Erases and creates the new directory
print(f"- Erasing '{save_directory}'")
if os.path.isdir(save_directory):
shutil.rmtree(save_directory)
os.mkdir(save_directory)
current_sequence_idx = 0
"""if not os.path.exists(save_directory):
os.mkdir(save_directory)
current_sequence_idx = 0
else:
directories = sorted(os.listdir(save_directory))
if len(directories) == 0:
current_sequence_idx = 0
else:
current_sequence_idx = directories[0]"""
video_saver = VideoSaver()
# Gets the first batch
for current_batches in dataloader:
break
with torch.no_grad():
observation_batch = current_batches.to_tuple()[0]
# Samples the starting index
batch_size = observation_batch.size(0)
observations_count = observation_batch.size(1)
batch_idx = 0
observation_idx = 0
first_action = int(input("Insert first action: "))
second_action = int(input("Insert second action: "))
interpolation_values = np.linspace(0.0, 1.0, interpolation_steps_count + 1).tolist()
for current_interpolation_value in interpolation_values:
# Creates the output directory
current_output_directory = os.path.join(save_directory, str(current_sequence_idx))
current_metadata_filename = os.path.join(current_output_directory, "play_metadata.pkl")
video_filename = os.path.join(current_output_directory, "video.mp4")
os.mkdir(current_output_directory)
print(f"- Saving output to '{current_output_directory}'")
current_frame_idx = 0
model.start_inference()
current_observation = observation_batch[batch_idx, observation_idx] # Extract the first batch element and the first observation in the sequence
current_frame = current_observation[:3]
frames = [] # Generated frames for the current sequence
frame_timestamps = [] # Timestamps at which each frame started being visualized on the screen
actions = [] # Sequence of actions used to generate the current sequence
while True:
# Display the frame
permuted_frame = (((current_frame + 1) / 2).permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
frames.append(permuted_frame)
pil_image = Image.fromarray(permuted_frame)
pil_image.save(os.path.join(current_output_directory, f"{current_frame_idx}.{image_extension}"))
# Request exit
if current_frame_idx == frames_count:
frames = np.stack(frames, axis=0)
video_saver.save_video(frames, video_filename, framerate)
# Restarts the game
break
actions.append(0) # Saves the current action
current_frame, current_observation = model.generate_next_interpolation(current_observation, first_action, second_action, current_interpolation_value)
# Frame cycle end
current_frame_idx += 1
# Sequence cycle end
current_sequence_idx += 1