-
Notifications
You must be signed in to change notification settings - Fork 73
/
run_fresco.py
318 lines (266 loc) · 12.9 KB
/
run_fresco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import os
#os.environ['CUDA_VISIBLE_DEVICES'] = "6"
# In China, set this to use huggingface
# os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
import cv2
import io
import gc
import yaml
import argparse
import torch
import torchvision
import diffusers
from diffusers import StableDiffusionPipeline, AutoencoderKL, DDPMScheduler, ControlNetModel
from src.utils import *
from src.keyframe_selection import get_keyframe_ind
from src.diffusion_hacked import apply_FRESCO_attn, apply_FRESCO_opt, disable_FRESCO_opt
from src.diffusion_hacked import get_flow_and_interframe_paras, get_intraframe_paras
from src.pipe_FRESCO import inference
def get_models(config):
print('\n' + '=' * 100)
print('creating models...')
import sys
sys.path.append("./src/ebsynth/deps/gmflow/")
sys.path.append("./src/EGNet/")
sys.path.append("./src/ControlNet/")
from gmflow.gmflow import GMFlow
from model import build_model
from annotator.hed import HEDdetector
from annotator.canny import CannyDetector
from annotator.midas import MidasDetector
# optical flow
flow_model = GMFlow(feature_channels=128,
num_scales=1,
upsample_factor=8,
num_head=1,
attention_type='swin',
ffn_dim_expansion=4,
num_transformer_layers=6,
).to('cuda')
checkpoint = torch.load(config['gmflow_path'], map_location=lambda storage, loc: storage)
weights = checkpoint['model'] if 'model' in checkpoint else checkpoint
flow_model.load_state_dict(weights, strict=False)
flow_model.eval()
print('create optical flow estimation model successfully!')
# saliency detection
sod_model = build_model('resnet')
sod_model.load_state_dict(torch.load(config['sod_path']))
sod_model.to("cuda").eval()
print('create saliency detection model successfully!')
# controlnet
if config['controlnet_type'] not in ['hed', 'depth', 'canny']:
print('unsupported control type, set to hed')
config['controlnet_type'] = 'hed'
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-"+config['controlnet_type'],
torch_dtype=torch.float16)
controlnet.to("cuda")
if config['controlnet_type'] == 'depth':
detector = MidasDetector()
elif config['controlnet_type'] == 'canny':
detector = CannyDetector()
else:
detector = HEDdetector()
print('create controlnet model-' + config['controlnet_type'] + ' successfully!')
# diffusion model
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(config['sd_path'], vae=vae, torch_dtype=torch.float16)
pipe.scheduler = DDPMScheduler.from_config(pipe.scheduler.config)
#noise_scheduler = DDPMScheduler.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="scheduler")
pipe.to("cuda")
pipe.scheduler.set_timesteps(config['num_inference_steps'], device=pipe._execution_device)
if config['use_freeu']:
from src.free_lunch_utils import apply_freeu
apply_freeu(pipe, b1=1.2, b2=1.5, s1=1.0, s2=1.0)
frescoProc = apply_FRESCO_attn(pipe)
frescoProc.controller.disable_controller()
apply_FRESCO_opt(pipe)
print('create diffusion model ' + config['sd_path'] + ' successfully!')
for param in flow_model.parameters():
param.requires_grad = False
for param in sod_model.parameters():
param.requires_grad = False
for param in controlnet.parameters():
param.requires_grad = False
for param in pipe.unet.parameters():
param.requires_grad = False
return pipe, frescoProc, controlnet, detector, flow_model, sod_model
def apply_control(x, detector, config):
if config['controlnet_type'] == 'depth':
detected_map, _ = detector(x)
elif config['controlnet_type'] == 'canny':
detected_map = detector(x, 50, 100)
else:
detected_map = detector(x)
return detected_map
def run_keyframe_translation(config):
pipe, frescoProc, controlnet, detector, flow_model, sod_model = get_models(config)
device = pipe._execution_device
guidance_scale = 7.5
do_classifier_free_guidance = guidance_scale > 1
assert(do_classifier_free_guidance)
timesteps = pipe.scheduler.timesteps
cond_scale = [config['cond_scale']] * config['num_inference_steps']
dilate = Dilate(device=device)
base_prompt = config['prompt']
if 'Realistic' in config['sd_path'] or 'realistic' in config['sd_path']:
a_prompt = ', RAW photo, subject, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3, '
n_prompt = '(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation'
else:
a_prompt = ', best quality, extremely detailed, '
n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing finger, extra digit, fewer digits, cropped, worst quality, low quality'
print('\n' + '=' * 100)
print('key frame selection for \"%s\"...'%(config['file_path']))
video_cap = cv2.VideoCapture(config['file_path'])
frame_num = int(video_cap.get(cv2.CAP_PROP_FRAME_COUNT))
# you can set extra_prompts for individual keyframe
# for example, extra_prompts[38] = ', closed eyes' to specify the person frame38 closes the eyes
extra_prompts = [''] * frame_num
keys = get_keyframe_ind(config['file_path'], frame_num, config['mininterv'], config['maxinterv'])
os.makedirs(config['save_path'], exist_ok=True)
os.makedirs(config['save_path']+'keys', exist_ok=True)
os.makedirs(config['save_path']+'video', exist_ok=True)
sublists = [keys[i:i+config['batch_size']-2] for i in range(2, len(keys), config['batch_size']-2)]
sublists[0].insert(0, keys[0])
sublists[0].insert(1, keys[1])
if len(sublists) > 1 and len(sublists[-1]) < 3:
add_num = 3 - len(sublists[-1])
sublists[-1] = sublists[-2][-add_num:] + sublists[-1]
sublists[-2] = sublists[-2][:-add_num]
if not sublists[-2]:
del sublists[-2]
print('processing %d batches:\nkeyframe indexes'%(len(sublists)), sublists)
print('\n' + '=' * 100)
print('video to video translation...')
batch_ind = 0
propagation_mode = batch_ind > 0
imgs = []
record_latents = []
video_cap = cv2.VideoCapture(config['file_path'])
for i in range(frame_num):
# prepare a batch of frame based on sublists
success, frame = video_cap.read()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = resize_image(frame, 512)
H, W, C = img.shape
Image.fromarray(img).save(os.path.join(config['save_path'], 'video/%04d.png'%(i)))
if i not in sublists[batch_ind]:
continue
imgs += [img]
if i != sublists[batch_ind][-1]:
continue
print('processing batch [%d/%d] with %d frames'%(batch_ind+1, len(sublists), len(sublists[batch_ind])))
# prepare input
batch_size = len(imgs)
n_prompts = [n_prompt] * len(imgs)
prompts = [base_prompt + a_prompt + extra_prompts[ind] for ind in sublists[batch_ind]]
if propagation_mode: # restore the extra_prompts from previous batch
assert len(imgs) == len(sublists[batch_ind]) + 2
prompts = ref_prompt + prompts
prompt_embeds = pipe._encode_prompt(
prompts,
device,
1,
do_classifier_free_guidance,
n_prompts,
)
imgs_torch = torch.cat([numpy2tensor(img) for img in imgs], dim=0)
edges = torch.cat([numpy2tensor(apply_control(img, detector, config)[:, :, None]) for img in imgs], dim=0)
edges = edges.repeat(1,3,1,1).cuda() * 0.5 + 0.5
if do_classifier_free_guidance:
edges = torch.cat([edges.to(pipe.unet.dtype)] * 2)
if config['use_salinecy']:
saliency = get_saliency(imgs, sod_model, dilate)
else:
saliency = None
# prepare parameters for inter-frame and intra-frame consistency
flows, occs, attn_mask, interattn_paras = get_flow_and_interframe_paras(flow_model, imgs)
correlation_matrix = get_intraframe_paras(pipe, imgs_torch, frescoProc,
prompt_embeds, seed = config['seed'])
'''
Flexible settings for attention:
* Turn off FRESCO-guided attention: frescoProc.controller.disable_controller()
Then you can turn on one specific attention submodule
* Turn on Cross-frame attention: frescoProc.controller.enable_cfattn(attn_mask)
* Turn on Spatial-guided attention: frescoProc.controller.enable_intraattn()
* Turn on Temporal-guided attention: frescoProc.controller.enable_interattn(interattn_paras)
Flexible settings for optimization:
* Turn off Spatial-guided optimization: set optimize_temporal = False in apply_FRESCO_opt()
* Turn off Temporal-guided optimization: set correlation_matrix = [] in apply_FRESCO_opt()
* Turn off FRESCO-guided optimization: disable_FRESCO_opt(pipe)
Flexible settings for background smoothing:
* Turn off background smoothing: set saliency = None in apply_FRESCO_opt()
'''
# Turn on all FRESCO support
frescoProc.controller.enable_controller(interattn_paras=interattn_paras, attn_mask=attn_mask)
apply_FRESCO_opt(pipe, steps = timesteps[:config['end_opt_step']],
flows = flows, occs = occs, correlation_matrix=correlation_matrix,
saliency=saliency, optimize_temporal = True)
gc.collect()
torch.cuda.empty_cache()
# run!
latents = inference(pipe, controlnet, frescoProc,
imgs_torch, prompt_embeds, edges, timesteps,
cond_scale, config['num_inference_steps'], config['num_warmup_steps'],
do_classifier_free_guidance, config['seed'], guidance_scale, config['use_controlnet'],
record_latents, propagation_mode,
flows = flows, occs = occs, saliency=saliency, repeat_noise=True)
gc.collect()
torch.cuda.empty_cache()
with torch.no_grad():
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]
image = torch.clamp(image, -1 , 1)
save_imgs = tensor2numpy(image)
bias = 2 if propagation_mode else 0
for ind, num in enumerate(sublists[batch_ind]):
Image.fromarray(save_imgs[ind+bias]).save(os.path.join(config['save_path'], 'keys/%04d.png'%(num)))
gc.collect()
torch.cuda.empty_cache()
batch_ind += 1
# current batch uses the last frame of the previous batch as ref
ref_prompt= [prompts[0], prompts[-1]]
imgs = [imgs[0], imgs[-1]]
propagation_mode = batch_ind > 0
if batch_ind == len(sublists):
gc.collect()
torch.cuda.empty_cache()
break
return keys
def run_full_video_translation(config, keys):
print('\n' + '=' * 100)
if not config['run_ebsynth']:
print('to translate full video with ebsynth, install ebsynth and run:')
else:
print('translating full video with:')
video_cap = cv2.VideoCapture(config['file_path'])
fps = int(video_cap.get(cv2.CAP_PROP_FPS))
o_video = os.path.join(config['save_path'], 'blend.mp4')
max_process = config['max_process']
save_path = config['save_path']
key_ind = io.StringIO()
for k in keys:
print('%d'%(k), end=' ', file=key_ind)
cmd = (
f'python video_blend.py {save_path} --key keys '
f'--key_ind {key_ind.getvalue()} --output {o_video} --fps {fps} '
f'--n_proc {max_process} -ps')
print('\n```')
print(cmd)
print('```')
if config['run_ebsynth']:
os.system(cmd)
print('\n' + '=' * 100)
print('Done')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('config_path', type=str,
default='./config/config_carturn.yaml',
help='The configuration file.')
opt = parser.parse_args()
print('=' * 100)
print('loading configuration...')
with open(opt.config_path, "r") as f:
config = yaml.safe_load(f)
for name, value in sorted(config.items()):
print('%s: %s' % (str(name), str(value)))
keys = run_keyframe_translation(config)
run_full_video_translation(config, keys)