Skip to content

Latest commit

 

History

History
145 lines (87 loc) · 4.12 KB

README.md

File metadata and controls

145 lines (87 loc) · 4.12 KB

TwitterAdsWindsorApi

TwitterAdsWindsorApi is a python package makes it easy to get marketing data from Twitter into python.

Windsor.ai allows to get marketing data from any platform. It simplifies the complexity of dealing with multiple platforms, unlocking unified, valuable information in a format that matters to you. For more details checkout onboard.windsor.ai.

Features

✅ Easy access to marketing data via windsor.ai APIs

✅ Lightweight (single dependency - requests)

✅ Supports both python 2.7+ and 3

Other Supported marketing and platforms

✅ Google Analytics

✅ Google Ads

✅ Facebook Ads

✅ Facebook organic

✅ Bing Ads

✅ Linkedin Ads

✅ Hubspot

✅ Salesforce

✅ Google search console

✅ Criteo

✅ Snapchat

✅ Tiktok

✅ Appnexus

✅ Campaign Manager

✅ Twitter

✅ Awin

✅ Adroll

✅ Shopify

✅ Klaviyo

✅ Airtable

✅ Intercom

✅ Zoho

✅ Idealo

✅ Pinterest

✅ Appsflyer

✅ Adobe

Usage

Installation

pip install TwitterAdsWindsorApi

Registration

You need to get a free API key to access windsor.ai's APIs. Register your account first and add a datasource like facebook ads and then get the API key. For more details check out our official API documentation and this article. Get the API key at https://onboard.windsor.ai

Minimal Example

from TwitterAdsWindsorApi.client import Client
from TwitterAdsWindsorApi.enums import LAST_7D
from TwitterAdsWindsorApi.enums import FIELD_SOURCE, FIELD_CAMPAIGN, FIELD_CLICKS

api_key = 'xxx'  # Get it from your windsor.ai account. It's recommended to store and get this securely, for example an env variable.

# Setup a client object with the API key
client = Client(api_key)

# Call the /connectors API.
campaign_clicks = client.connectors(date_preset=LAST_7D, fields=[FIELD_SOURCE, FIELD_CAMPAIGN, FIELD_CLICKS])

# can also be run like:
campaign_clicks = client.connectors(date_preset='last_7d', fields=['date','clicks','spend'])

# Response will be a python dict (parsed from the json response recieved).
print(campaign_clicks)

[
  {'date': '2021-04-15', 'clicks': 3, 'spend': 8.139999999999999},
  {'date': '2021-04-15', 'clicks': 2, 'spend': 6.51},
  {'date': '2021-04-15', 'clicks': 1, 'spend': 3.88},
  {'date': '2021-04-15', 'clicks': 4, 'spend': 3.275311},
  {'date': '2021-04-15', 'clicks': 6, 'spend': 1.408321}
  ],

# Get Google Ads data only
campaign_clicks = client.connectors(
    connector="google_ads",
    date_preset=LAST_7D,
    fields=["account_name", "campaign", "clicks", "datasource", "source", "spend"]
)

# Get Facebook Ads data only
campaign_clicks = client.connectors(
    connector="facebook",
    date_preset=LAST_7D,
    fields=["account_name", "campaign", "clicks", "datasource", "source", "spend"]
)

# Get list of all possible connectors (i.e: Google Ads, Facebook Ads, Twitter, Tik Tok etc.)
list_connectors = client.list_connectors
print(list_connectors)

['adform', 'adobe', 'adroll', 'all', 'amazon_ads', 'amazon_s3', 'amazon_sp', 'apple_search_ads', 'appnexus', 'appsflyer', 'awin', 'bing', 'cm360', 'criteo' 'currency_conversion', 'daisycon', 'dv360', 'facebook', 'facebook_leads', 'facebook_organic', 'gmailcsv', 'google_ad_manager', 'google_ads', 'google_pagespeed', 'googleanalytics', 'googleanalytics4', 'googlesheets', 'hubspot', 'idealo', 'instagram', 'klaviyo', 'linkedin', 'linkedin_organic', 'mailchimp', 'outbrain', 'pinterest', 'quora', 'reddit', 'rtbhouse', 'salesforce', 'searchconsole', 'sftp', 'shopify', 'snapchat', 'stripe', 'taboola', 'tiktok', 'twitter', 'twitter_organic', 'vertaa', 'zoho']

# Sample with date specific ranges.
dataset_with_ranges = client.connectors(
      date_from="2022-10-18",
      date_to="2022-10-20",
      fields=["account_name", "campaign", "clicks", "datasource", "source", "spend", "date"]
)

List of fields

The full list of fields that the package accepts is given in https://windsor.ai/connector/all/. Fields can be common to all the connectors or specific for each company.