forked from MorvanZhou/Evolutionary-Algorithm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Find Path.py
110 lines (88 loc) · 3.86 KB
/
Find Path.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
"""
Visualize Genetic Algorithm to find a path to the target.
Visit my tutorial website for more: https://mofanpy.com/tutorials/
"""
import matplotlib.pyplot as plt
import numpy as np
N_MOVES = 150
DNA_SIZE = N_MOVES*2 # 40 x moves, 40 y moves
DIRECTION_BOUND = [0, 1]
CROSS_RATE = 0.8
MUTATE_RATE = 0.0001
POP_SIZE = 100
N_GENERATIONS = 100
GOAL_POINT = [10, 5]
START_POINT = [0, 5]
OBSTACLE_LINE = np.array([[5, 2], [5, 8]])
class GA(object):
def __init__(self, DNA_size, DNA_bound, cross_rate, mutation_rate, pop_size, ):
self.DNA_size = DNA_size
DNA_bound[1] += 1
self.DNA_bound = DNA_bound
self.cross_rate = cross_rate
self.mutate_rate = mutation_rate
self.pop_size = pop_size
self.pop = np.random.randint(*DNA_bound, size=(pop_size, DNA_size))
def DNA2product(self, DNA, n_moves, start_point): # convert to readable string
pop = (DNA - 0.5) / 2
pop[:, 0], pop[:, n_moves] = start_point[0], start_point[1]
lines_x = np.cumsum(pop[:, :n_moves], axis=1)
lines_y = np.cumsum(pop[:, n_moves:], axis=1)
return lines_x, lines_y
def get_fitness(self, lines_x, lines_y, goal_point, obstacle_line):
dist2goal = np.sqrt((goal_point[0] - lines_x[:, -1]) ** 2 + (goal_point[1] - lines_y[:, -1]) ** 2)
fitness = np.power(1 / (dist2goal + 1), 2)
points = (lines_x > obstacle_line[0, 0] - 0.5) & (lines_x < obstacle_line[1, 0] + 0.5)
y_values = np.where(points, lines_y, np.zeros_like(lines_y) - 100)
bad_lines = ((y_values > obstacle_line[0, 1]) & (y_values < obstacle_line[1, 1])).max(axis=1)
fitness[bad_lines] = 1e-6
return fitness
def select(self, fitness):
idx = np.random.choice(np.arange(self.pop_size), size=self.pop_size, replace=True, p=fitness/fitness.sum())
return self.pop[idx]
def crossover(self, parent, pop):
if np.random.rand() < self.cross_rate:
i_ = np.random.randint(0, self.pop_size, size=1) # select another individual from pop
cross_points = np.random.randint(0, 2, self.DNA_size).astype(np.bool) # choose crossover points
parent[cross_points] = pop[i_, cross_points] # mating and produce one child
return parent
def mutate(self, child):
for point in range(self.DNA_size):
if np.random.rand() < self.mutate_rate:
child[point] = np.random.randint(*self.DNA_bound)
return child
def evolve(self, fitness):
pop = self.select(fitness)
pop_copy = pop.copy()
for parent in pop: # for every parent
child = self.crossover(parent, pop_copy)
child = self.mutate(child)
parent[:] = child
self.pop = pop
class Line(object):
def __init__(self, n_moves, goal_point, start_point, obstacle_line):
self.n_moves = n_moves
self.goal_point = goal_point
self.start_point = start_point
self.obstacle_line = obstacle_line
plt.ion()
def plotting(self, lines_x, lines_y):
plt.cla()
plt.scatter(*self.goal_point, s=200, c='r')
plt.scatter(*self.start_point, s=100, c='b')
plt.plot(self.obstacle_line[:, 0], self.obstacle_line[:, 1], lw=3, c='k')
plt.plot(lines_x.T, lines_y.T, c='k')
plt.xlim((-5, 15))
plt.ylim((-5, 15))
plt.pause(0.01)
ga = GA(DNA_size=DNA_SIZE, DNA_bound=DIRECTION_BOUND,
cross_rate=CROSS_RATE, mutation_rate=MUTATE_RATE, pop_size=POP_SIZE)
env = Line(N_MOVES, GOAL_POINT, START_POINT, OBSTACLE_LINE)
for generation in range(N_GENERATIONS):
lx, ly = ga.DNA2product(ga.pop, N_MOVES, START_POINT)
fitness = ga.get_fitness(lx, ly, GOAL_POINT, OBSTACLE_LINE)
ga.evolve(fitness)
print('Gen:', generation, '| best fit:', fitness.max())
env.plotting(lx, ly)
plt.ioff()
plt.show()