forked from XuecaiHu/Meta-SR-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoption.py
170 lines (153 loc) · 7.65 KB
/
option.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import argparse
import template
parser = argparse.ArgumentParser(description='EDSR and MDSR')
parser.add_argument('--debug', action='store_true',
help='Enables debug mode')
parser.add_argument('--template', default='.',
help='You can set various templates in option.py')
# Hardware specifications
parser.add_argument('--n_threads', type=int, default=6,
help='number of threads for data loading')
parser.add_argument('--cpu', action='store_true',
help='use cpu only')
parser.add_argument('--n_GPUs', type=int, default=3,
help='number of GPUs')
parser.add_argument('--seed', type=int, default=1,
help='random seed')
# Data specifications
parser.add_argument('--dir_data', type=str, default='./',
help='dataset directory')
parser.add_argument('--dir_demo', type=str, default='../test',
help='demo image directory')
parser.add_argument('--data_train', type=str, default='DIV2K',
help='train dataset name')
parser.add_argument('--data_test', type=str, default='Set5',
help='test dataset name')
parser.add_argument('--data_range', type=str, default='1-800/801-810',
help='train/test data range')
parser.add_argument('--ext', type=str, default='sep',
help='dataset file extension')
parser.add_argument('--scale', type=str, default='',
help='super resolution scale')
parser.add_argument('--patch_size', type=int, default=50,
help='output patch size')
parser.add_argument('--rgb_range', type=int, default=255,
help='maximum value of RGB')
parser.add_argument('--n_colors', type=int, default=3,
help='number of color channels to use')
parser.add_argument('--chop', action='store_true',
help='enable memory-efficient forward')
parser.add_argument('--no_augment', action='store_true',
help='do not use data augmentation')
# Model specifications
parser.add_argument('--model', default='META',
help='model name')
parser.add_argument('--act', type=str, default='relu',
help='activation function')
parser.add_argument('--pre_train', type=str, default='.',
help='pre-trained model directory')
parser.add_argument('--extend', type=str, default='.',
help='pre-trained model directory')
parser.add_argument('--n_resblocks', type=int, default=16,
help='number of residual blocks')
parser.add_argument('--n_feats', type=int, default=64,
help='number of feature maps')
parser.add_argument('--res_scale', type=float, default=1,
help='residual scaling')
parser.add_argument('--shift_mean', default=True,
help='subtract pixel mean from the input')
parser.add_argument('--dilation', action='store_true',
help='use dilated convolution')
parser.add_argument('--precision', type=str, default='single',
choices=('single', 'half'),
help='FP precision for test (single | half)')
# Option for Residual dense network (RDN)
parser.add_argument('--G0', type=int, default=64,
help='default number of filters. (Use in RDN)')
parser.add_argument('--RDNkSize', type=int, default=3,
help='default kernel size. (Use in RDN)')
parser.add_argument('--RDNconfig', type=str, default='B',
help='parameters config of RDN. (Use in RDN)')
# Option for Residual channel attention network (RCAN)
parser.add_argument('--n_resgroups', type=int, default=10,
help='number of residual groups')
parser.add_argument('--reduction', type=int, default=16,
help='number of feature maps reduction')
# Training specifications
parser.add_argument('--reset', action='store_true',
help='reset the training')
parser.add_argument('--test_every', type=int, default=1000,
help='do test per every N batches')
parser.add_argument('--epochs', type=int, default=1000,
help='number of epochs to train')
parser.add_argument('--batch_size', type=int, default=16,
help='input batch size for training')
parser.add_argument('--split_batch', type=int, default=1,
help='split the batch into smaller chunks')
parser.add_argument('--self_ensemble', action='store_true',
help='use self-ensemble method for test')
parser.add_argument('--test_only', action='store_true',
help='set this option to test the model')
parser.add_argument('--gan_k', type=int, default=1,
help='k value for adversarial loss')
# Optimization specifications
parser.add_argument('--lr', type=float, default=1e-4,
help='learning rate')
parser.add_argument('--lr_decay', type=int, default=200,
help='learning rate decay per N epochs')
parser.add_argument('--decay_type', type=str, default='step',
help='learning rate decay type')
parser.add_argument('--gamma', type=float, default=0.5,
help='learning rate decay factor for step decay')
parser.add_argument('--optimizer', default='ADAM',
choices=('SGD', 'ADAM', 'RMSprop'),
help='optimizer to use (SGD | ADAM | RMSprop)')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum')
parser.add_argument('--beta1', type=float, default=0.9,
help='ADAM beta1')
parser.add_argument('--beta2', type=float, default=0.999,
help='ADAM beta2')
parser.add_argument('--epsilon', type=float, default=1e-8,
help='ADAM epsilon for numerical stability')
parser.add_argument('--weight_decay', type=float, default=0,
help='weight decay')
parser.add_argument('--start_epoch', type=int, default=0,
help='resume from the snapshot, and the start_epoch')
# Loss specifications
parser.add_argument('--loss', type=str, default='1*L1',
help='loss function configuration')
parser.add_argument('--skip_threshold', type=float, default='1e6',
help='skipping batch that has large error')
# Log specifications
parser.add_argument('--save', type=str, default='meta',
help='file name to save')
parser.add_argument('--load', type=str, default='.',
help='file name to load')
parser.add_argument('--resume', type=int, default=0,
help='resume from specific checkpoint')
parser.add_argument('--save_models', action='store_true',
help='save all intermediate models')
parser.add_argument('--print_every', type=int, default=100,
help='how many batches to wait before logging training status')
parser.add_argument('--save_results', action='store_true',
help='save output results')
args = parser.parse_args()
template.set_template(args)
#args.scale = list(map(lambda x: int(x), args.scale.split('+')))
###here we redefine the scale
if args.scale=='':
import numpy as np
#args.scale = np.linspace(1.1,4,30)
args.scale = [1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3.0,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4.0]
#print(args.scale)
else:
args.scale = list(map(lambda x: float(x), args.scale.split('+')))
print(args.scale)
if args.epochs == 0:
args.epochs = 1e8
for arg in vars(args):
if vars(args)[arg] == 'True':
vars(args)[arg] = True
elif vars(args)[arg] == 'False':
vars(args)[arg] = False