name | value |
---|---|
Training Set | MNIST 42000 28x28 gray |
Batch Size | 100 |
Iterations | 2000 |
forward_times | 2601 |
backward_times | 2001 |
CPU | i7-4790 CPU @ 3.60GHz |
Accuracy: 0.991667
Iter: 2000, Cost: 0.007383
name | forward_time | backward_time | forward_mean | backward_mean |
---|---|---|---|---|
data | 0.073538 | 0.024317 | 0.000028 | 0.000012 |
conv1 | 50.427243 | 82.105529 | 0.019388 | 0.041032 |
pool1 | 95.274342 | 10.921718 | 0.036630 | 0.005458 |
conv2 | 71.583208 | 118.194660 | 0.027521 | 0.059068 |
pool2 | 14.343701 | 2.975322 | 0.005515 | 0.001487 |
fc3 | 9.543055 | 15.118490 | 0.003669 | 0.007555 |
relu3 | 1.383795 | 1.082115 | 0.000532 | 0.000541 |
pred | 5.047948 | 6.669519 | 0.001941 | 0.003333 |
loss | 0.458279 | 0.177457 | 0.000176 | 0.000089 |
Accuracy: 0.991667
Iter: 2000, Cost: 0.007383
name | forward_time | backward_time | forward_mean | backward_mean |
---|---|---|---|---|
data | 0.039973 | 0.019009 | 0.000015 | 0.000009 |
conv1 | 76.094196 | 114.764927 | 0.029256 | 0.057354 |
pool1 | 72.345203 | 10.924688 | 0.027814 | 0.005460 |
conv2 | 370.081568 | 476.961305 | 0.142284 | 0.238361 |
pool2 | 9.614037 | 2.431894 | 0.003696 | 0.001215 |
fc3 | 83.233347 | 85.736211 | 0.032001 | 0.042847 |
relu3 | 0.765435 | 0.561773 | 0.000294 | 0.000281 |
pred | 1.098624 | 1.267450 | 0.000422 | 0.000633 |
loss | 0.276948 | 0.102970 | 0.000106 | 0.000051 |
Accuracy: 0.991667
Iter: 2000, Cost: 0.007383
name | forward_time | backward_time | forward_mean | backward_mean |
---|---|---|---|---|
data | 0.039304 | 0.018812 | 0.000015 | 0.000009 |
conv1 | 77.984102 | 117.541489 | 0.029982 | 0.058741 |
pool1 | 73.096253 | 11.021775 | 0.028103 | 0.005508 |
conv2 | 373.498943 | 489.150597 | 0.143598 | 0.244453 |
pool2 | 10.090908 | 2.586956 | 0.003880 | 0.001293 |
fc3 | 83.812420 | 86.976251 | 0.032223 | 0.043466 |
relu3 | 0.766895 | 0.567209 | 0.000295 | 0.000283 |
pred | 1.100621 | 1.267404 | 0.000423 | 0.000633 |
loss | 0.278426 | 0.091963 | 0.000107 | 0.000046 |