-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDQN.py
204 lines (159 loc) · 7.98 KB
/
DQN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import tensorflow as tf
import numpy as np
import gym
import random
import math
class DQN(object):
def __init__(self):
tf.set_random_seed(1)
np.random.seed(1)
# Hyper Parameters
self.BATCH_SIZE = 32
self.LR = 1e-4 # learning rate
self.EPSILON = 0.8 # greedy policy
self.GAMMA = 0.995 # reward discount
self.TARGET_REPLACE_ITER = 5 # target update frequency
self.MEMORY_CAPACITY = 128
self.MEMORY_COUNTER = 0 # for store experience
self.RUN_TIME = 200000
self.env = gym.make('Breakout-v0')
self.N_ACTIONS = 4
self.MEMORY = [] # initialize memory
########################
self.x = tf.placeholder('float', [None, 210*160*3])
self.y = tf.placeholder('float', [None, 4])
self.target = tf.placeholder('float', [None, 4])
self.keep_rate = 0.8
self.keep_prob = tf.placeholder(tf.float32)
self.eval_weights = {'W_conv1':tf.Variable(tf.random_normal([5,5,3,32])),
'W_conv2':tf.Variable(tf.random_normal([5,5,32,64])),
'W_conv3':tf.Variable(tf.random_normal([5,5,64,64])),
'W_conv4':tf.Variable(tf.random_normal([5,5,64,64])),
'W_fc':tf.Variable(tf.random_normal([14*10*64,1024])),
'out':tf.Variable(tf.random_normal([1024, self.N_ACTIONS]))}
self.eval_biases = {'b_conv1':tf.Variable(tf.random_normal([32])),
'b_conv2':tf.Variable(tf.random_normal([64])),
'b_conv3':tf.Variable(tf.random_normal([64])),
'b_conv4':tf.Variable(tf.random_normal([64])),
'b_fc':tf.Variable(tf.random_normal([1024])),
'out':tf.Variable(tf.random_normal([self.N_ACTIONS]))}
self.target_weights = {'W_conv1':tf.Variable(tf.random_normal([5,5,3,32])),
'W_conv2':tf.Variable(tf.random_normal([5,5,32,64])),
'W_conv3':tf.Variable(tf.random_normal([5,5,64,64])),
'W_conv4':tf.Variable(tf.random_normal([5,5,64,64])),
'W_fc':tf.Variable(tf.random_normal([14*10*64,1024])),
'out':tf.Variable(tf.random_normal([1024, self.N_ACTIONS]))}
self.target_biases = {'b_conv1':tf.Variable(tf.random_normal([32])),
'b_conv2':tf.Variable(tf.random_normal([64])),
'b_conv3':tf.Variable(tf.random_normal([64])),
'b_conv4':tf.Variable(tf.random_normal([64])),
'b_fc':tf.Variable(tf.random_normal([1024])),
'out':tf.Variable(tf.random_normal([self.N_ACTIONS]))}
self.e_pred = self.DQN_eval(self.x)
self.prediction = self.DQN_target(self.x)
self.cost = tf.reduce_mean(tf.squared_difference(self.prediction, self.target))
self.optimizer = tf.train.AdamOptimizer(self.LR).minimize(self.cost)
self.saver = tf.train.Saver()
self.sess.run(tf.global_variables_initializer())
def conv2d(self,x, W):
return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')
def maxpool2d(self,x):
# size of window movement of window
return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
def DQN_eval(self,x):
x = tf.reshape(x, shape=[-1, 210, 160, 3])
conv1 = tf.nn.relu(self.conv2d(x, self.eval_weights['W_conv1']) + self.eval_biases['b_conv1'])
conv1 = self.maxpool2d(conv1)
conv2 = tf.nn.relu(self.conv2d(conv1, self.eval_weights['W_conv2']) + self.eval_biases['b_conv2'])
conv2 = self.maxpool2d(conv2)
conv3 = tf.nn.relu(self.conv2d(conv2, self.eval_weights['W_conv3']) + self.eval_biases['b_conv3'])
conv3 = self.maxpool2d(conv3)
conv4 = tf.nn.relu(self.conv2d(conv3, self.eval_weights['W_conv4']) + self.eval_biases['b_conv4'])
conv4 = self.maxpool2d(conv4)
fc = tf.reshape(conv4,[-1,14*10*64])
fc = tf.nn.sigmoid(tf.matmul(fc, self.eval_weights['W_fc']) + self.eval_biases['b_fc'])
fc = tf.nn.dropout(fc, self.keep_rate)
output = tf.matmul(fc, self.eval_weights['out']) + self.eval_biases['out']
return output
def DQN_target(self,x):
x = tf.reshape(x, shape=[-1, 210, 160, 3])
conv1 = tf.nn.relu(self.conv2d(x, self.target_weights['W_conv1']) + self.target_biases['b_conv1'])
conv1 = self.maxpool2d(conv1)
conv2 = tf.nn.relu(self.conv2d(conv1, self.target_weights['W_conv2']) + self.target_biases['b_conv2'])
conv2 = self.maxpool2d(conv2)
conv3 = tf.nn.relu(self.conv2d(conv2, self.target_weights['W_conv3']) + self.target_biases['b_conv3'])
conv3 = self.maxpool2d(conv3)
conv4 = tf.nn.relu(self.conv2d(conv3, self.target_weights['W_conv4']) + self.target_biases['b_conv4'])
conv4 = self.maxpool2d(conv4)
fc = tf.reshape(conv4,[-1,14*10*64])
fc = tf.nn.sigmoid(tf.matmul(fc, self.target_weights['W_fc']) + self.target_biases['b_fc'])
fc = tf.nn.dropout(fc, keep_rate)
output = tf.matmul(fc, self.target_weights['out']) + self.target_biases['out']
return output
def update_weights(self):
copy = []
i = 0
for layer,_ in self.eval_weights.items():
copy.append(self.eval_weights[layer].assign(self.target_weights[layer]))
for layer,_ in self.eval_biases.items():
copy.append(self.eval_biases[layer].assign(self.target_biases[layer]))
for c in range(len(copy)):
self.sess.run(copy[c])
def choose_action(self,s):
state = [np.array([s]).flatten()]
if np.random.uniform() <= self.EPSILON:
actions_value = sess.run(self.e_pred,feed_dict={self.x: state})
action = np.argmax(actions_value[0])
else:
action = np.random.randint(0, self.N_ACTIONS)
return action
def train(self):
for i in range(self.BATCH_SIZE):
MEM = random.choice(self.MEMORY)
s1 = [np.array([MEM[0]]).flatten()]
s2 = [np.array([MEM[3]]).flatten()]
new_target = sess.run(self.e_pred,feed_dict={self.x: s1})
Qvals = sess.run(self.e_pred,feed_dict={self.x: s2})
Rmax = MEM[2] + self.GAMMA * np.argmax(Qvals[0])
new_target[0][MEM[1]] = Rmax
self.sess.run(self.optimizer,feed_dict={self.x: s1, self.target: new_target, self.keep_prob: 0.8})
def remember(self, mem):
if len(self.MEMORY) < self.MEMORY_CAPACITY:
self.MEMORY.append(mem)
else:
self.MEMORY[self.MEMORY_COUNTER] = mem
if self.MEMORY_COUNTER < self.MEMORY_CAPACITY - 2:
self.MEMORY_CAPACITY = self.MEMORY_CAPACITY + 1
else:
self.MEMORY_CAPACITY = 0
if __name__ == '__main__':
agent = DQN()
status = input("#: ")
if(status == "load"):
agent.saver.restore(agent.sess, "save/model.ckpt")
print("Model restored")
for i_episode in range(agent.RUN_TIME):
observation = agent.env.reset()
t = 0
score = 0
while(1):
t = t + 1
agent.env.render()
s = observation
a = agent.choose_action(s)
observation, reward, done, info = agent.env.step(a)
if reward == 1:
reward = 100
reward = reward + math.log10(t)/10
agent.remember([s, a, reward, observation])
score = score + reward
if done:
print("Run {} - Episode finished after {} timesteps".format(i_episode,t+1))
print("Score: ", score)
break
agent.train()
if i_episode % agent.TARGET_REPLACE_ITER == 0:
print("Updating Weights")
agent.update_weights()
agent.saver.save(agent.sess, "save/model.ckpt")
print("Model saved")