-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsuperglue.py
244 lines (193 loc) · 9.46 KB
/
superglue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from copy import deepcopy
from pathlib import Path
import torch
from torch import nn
def MLP(channels: list, do_bn=True):
""" Multi-layer perceptron """
n = len(channels)
layers = []
for i in range(1, n):
layers.append(
nn.Conv1d(channels[i - 1], channels[i], kernel_size=1, bias=True))
if i < (n-1):
if do_bn:
layers.append(nn.BatchNorm1d(channels[i]))
layers.append(nn.ReLU())
return nn.Sequential(*layers)
def normalize_keypoints(kpts, image_shape):
""" Normalize keypoints locations based on image image_shape"""
_, _, height, width = image_shape
one = kpts.new_tensor(1)
size = torch.stack([one*width, one*height])[None]
center = size / 2
scaling = size.max(1, keepdim=True).values * 0.7
return (kpts - center[:, None, :]) / scaling[:, None, :]
class KeypointEncoder(nn.Module):
""" Joint encoding of visual appearance and location using MLPs"""
def __init__(self, feature_dim, layers):
super().__init__()
self.encoder = MLP([3] + layers + [feature_dim])
nn.init.constant_(self.encoder[-1].bias, 0.0)
def forward(self, kpts, scores):
inputs = [kpts.transpose(1, 2), scores.unsqueeze(1)]
return self.encoder(torch.cat(inputs, dim=1))
def attention(query, key, value):
dim = query.shape[1]
scores = torch.einsum('bdhn,bdhm->bhnm', query, key) / dim**.5
prob = torch.nn.functional.softmax(scores, dim=-1)
return torch.einsum('bhnm,bdhm->bdhn', prob, value), prob
class MultiHeadedAttention(nn.Module):
""" Multi-head attention to increase model expressivitiy """
def __init__(self, num_heads: int, d_model: int):
super().__init__()
assert d_model % num_heads == 0
self.dim = d_model // num_heads
self.num_heads = num_heads
self.merge = nn.Conv1d(d_model, d_model, kernel_size=1)
self.proj = nn.ModuleList([deepcopy(self.merge) for _ in range(3)])
def forward(self, query, key, value):
batch_dim = query.size(0)
query, key, value = [l(x).view(batch_dim, self.dim, self.num_heads, -1)
for l, x in zip(self.proj, (query, key, value))]
x, _ = attention(query, key, value)
return self.merge(x.contiguous().view(batch_dim, self.dim*self.num_heads, -1))
class AttentionalPropagation(nn.Module):
def __init__(self, feature_dim: int, num_heads: int):
super().__init__()
self.attn = MultiHeadedAttention(num_heads, feature_dim)
self.mlp = MLP([feature_dim*2, feature_dim*2, feature_dim])
nn.init.constant_(self.mlp[-1].bias, 0.0)
def forward(self, x, source):
message = self.attn(x, source, source)
return self.mlp(torch.cat([x, message], dim=1))
class AttentionalGNN(nn.Module):
def __init__(self, feature_dim: int, layer_names: list):
super().__init__()
self.layers = nn.ModuleList([
AttentionalPropagation(feature_dim, 4)
for _ in range(len(layer_names))])
self.names = layer_names
def forward(self, desc0, desc1):
for layer, name in zip(self.layers, self.names):
if name == 'cross':
src0, src1 = desc1, desc0
else: # if name == 'self':
src0, src1 = desc0, desc1
delta0, delta1 = layer(desc0, src0), layer(desc1, src1)
desc0, desc1 = (desc0 + delta0), (desc1 + delta1)
return desc0, desc1
def log_sinkhorn_iterations(Z, log_mu, log_nu, iters: int):
""" Perform Sinkhorn Normalization in Log-space for stability"""
u, v = torch.zeros_like(log_mu), torch.zeros_like(log_nu)
for _ in range(iters):
u = log_mu - torch.logsumexp(Z + v.unsqueeze(1), dim=2)
v = log_nu - torch.logsumexp(Z + u.unsqueeze(2), dim=1)
return Z + u.unsqueeze(2) + v.unsqueeze(1)
def log_optimal_transport(scores, alpha, iters: int):
""" Perform Differentiable Optimal Transport in Log-space for stability"""
b, m, n = scores.shape
one = scores.new_tensor(1)
ms, ns = (m*one).to(scores), (n*one).to(scores)
bins0 = alpha.expand(b, m, 1)
bins1 = alpha.expand(b, 1, n)
alpha = alpha.expand(b, 1, 1)
couplings = torch.cat([torch.cat([scores, bins0], -1),
torch.cat([bins1, alpha], -1)], 1)
norm = - (ms + ns).log()
log_mu = torch.cat([norm.expand(m), ns.log()[None] + norm])
log_nu = torch.cat([norm.expand(n), ms.log()[None] + norm])
log_mu, log_nu = log_mu[None].expand(b, -1), log_nu[None].expand(b, -1)
Z = log_sinkhorn_iterations(couplings, log_mu, log_nu, iters)
Z = Z - norm # multiply probabilities by M+N
return Z
def arange_like(x, dim: int):
return x.new_ones(x.shape[dim]).cumsum(0) - 1 # traceable in 1.1
class SuperGlue(nn.Module):
"""SuperGlue feature matching middle-end
Given two sets of keypoints and locations, we determine the
correspondences by:
1. Keypoint Encoding (normalization + visual feature and location fusion)
2. Graph Neural Network with multiple self and cross-attention layers
3. Final projection layer
4. Optimal Transport Layer (a differentiable Hungarian matching algorithm)
5. Thresholding matrix based on mutual exclusivity and a match_threshold
The correspondence ids use -1 to indicate non-matching points.
Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew
Rabinovich. SuperGlue: Learning Feature Matching with Graph Neural
Networks. In CVPR, 2020. https://arxiv.org/abs/1911.11763
"""
default_config = {
'descriptor_dim': 256,
'weights': 'indoor',
'keypoint_encoder': [32, 64, 128, 256],
'GNN_layers': ['self', 'cross'] * 9,
'sinkhorn_iterations': 100,
'match_threshold': 0.2,
}
def __init__(self, config):
super().__init__()
self.config = {**self.default_config, **config}
self.kenc = KeypointEncoder(
self.config['descriptor_dim'], self.config['keypoint_encoder'])
self.gnn = AttentionalGNN(
self.config['descriptor_dim'], self.config['GNN_layers'])
self.final_proj = nn.Conv1d(
self.config['descriptor_dim'], self.config['descriptor_dim'],
kernel_size=1, bias=True)
bin_score = torch.nn.Parameter(torch.tensor(1.))
self.register_parameter('bin_score', bin_score)
# assert self.config['weights'] in ['indoor', 'outdoor']
path = Path(__file__).parent
path = path / 'weights/superglue_{}.pth'.format(self.config['weights'])
self.load_state_dict(torch.load(str(path)))
print('Loaded SuperGlue model (\"{}\" weights)'.format(
self.config['weights']))
def forward(self, data):
"""Run SuperGlue on a pair of keypoints and descriptors"""
desc0, desc1 = data['descriptors0'], data['descriptors1']
kpts0, kpts1 = data['keypoints0'], data['keypoints1']
if kpts0.shape[1] == 0 or kpts1.shape[1] == 0: # no keypoints
shape0, shape1 = kpts0.shape[:-1], kpts1.shape[:-1]
return {
'matches0': kpts0.new_full(shape0, -1, dtype=torch.int),
'matches1': kpts1.new_full(shape1, -1, dtype=torch.int),
'matching_scores0': kpts0.new_zeros(shape0),
'matching_scores1': kpts1.new_zeros(shape1),
}
# Keypoint normalization.
kpts0 = normalize_keypoints(kpts0, data['image0'].shape)
kpts1 = normalize_keypoints(kpts1, data['image1'].shape)
# Keypoint MLP encoder.
desc0 = desc0 + self.kenc(kpts0, data['scores0'])
desc1 = desc1 + self.kenc(kpts1, data['scores1'])
# Multi-layer Transformer network.
desc0, desc1 = self.gnn(desc0, desc1)
# Final MLP projection.
mdesc0, mdesc1 = self.final_proj(desc0), self.final_proj(desc1)
# Compute matching descriptor distance.
scores = torch.einsum('bdn,bdm->bnm', mdesc0, mdesc1)
scores = scores / self.config['descriptor_dim']**.5
# Run the optimal transport.
scores = log_optimal_transport(
scores, self.bin_score,
iters=self.config['sinkhorn_iterations'])
# print(scores.shape)
# Get the matches with score above "match_threshold".
max0, max1 = scores[:, :-1, :-1].max(2), scores[:, :-1, :-1].max(1)
indices0, indices1 = max0.indices, max1.indices
mutual0 = arange_like(indices0, 1)[None] == indices1.gather(1, indices0)
mutual1 = arange_like(indices1, 1)[None] == indices0.gather(1, indices1)
zero = scores.new_tensor(0)
mscores0 = torch.where(mutual0, max0.values.exp(), zero)
mscores1 = torch.where(mutual1, mscores0.gather(1, indices1), zero)
valid0 = mutual0 & (mscores0 > self.config['match_threshold'])
valid1 = mutual1 & valid0.gather(1, indices1)
indices0 = torch.where(valid0, indices0, indices0.new_tensor(-1))
indices1 = torch.where(valid1, indices1, indices1.new_tensor(-1))
return {
'scores' : scores,
'matches0': indices0, # use -1 for invalid match
'matches1': indices1, # use -1 for invalid match
'matching_scores0': mscores0,
'matching_scores1': mscores1,
}