-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtest.py
executable file
·88 lines (72 loc) · 3.2 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import argparse
import fastText
from PIL import Image
import cv2
import numpy as np
import torch
import torchvision.transforms as transforms
from torchvision.utils import save_image
from model import Generator
from data import split_sentence_into_words
parser = argparse.ArgumentParser()
parser.add_argument('--img_root', type=str, required=True,
help='root directory that contains images')
parser.add_argument('--text_file', type=str, required=True,
help='text file that contains descriptions')
parser.add_argument('--fasttext_model', type=str, required=True,
help='pretrained fastText model (binary file)')
parser.add_argument('--generator_model', type=str, required=True,
help='pretrained generator model')
parser.add_argument('--output_root', type=str, required=True,
help='root directory of output')
parser.add_argument('--no_cuda', action='store_true',
help='do not use cuda')
args = parser.parse_args()
if __name__ == '__main__':
if not args.no_cuda and not torch.cuda.is_available():
print('Warning: cuda is not available on this machine.')
args.no_cuda = True
device = torch.device('cpu' if args.no_cuda else 'cuda')
if not os.path.exists(args.output_root):
os.makedirs(args.output_root)
print('Loading a pretrained fastText model...')
word_embedding = fastText.load_model(args.fasttext_model)
print('Loading a pretrained model...')
G = Generator().to(device)
G.load_state_dict(torch.load(args.generator_model))
G.eval()
transform = transforms.Compose([
transforms.Resize(136),
transforms.CenterCrop(128),
transforms.ToTensor()
])
print('Loading test data...')
filenames = os.listdir(args.img_root)
img = []
for fn in filenames:
im = Image.open(os.path.join(args.img_root, fn))
im = transform(im)
img.append(im)
img = torch.stack(img)
save_image(img, os.path.join(args.output_root, 'original.jpg'), pad_value=1)
img = img.mul(2).sub(1).to(device)
html = '<html><body><h1>Manipulated Images</h1><table border="1px solid gray" style="width=100%"><tr><td><b>Description</b></td><td><b>Image</b></td></tr>'
html += '\n<tr><td>ORIGINAL</td><td><img src="{}"></td></tr>'.format('original.jpg')
with open(args.text_file, 'r') as f:
texts = f.readlines()
for i, text in enumerate(texts):
text = text.replace('\n', '')
words = split_sentence_into_words(text)
txt = torch.tensor([word_embedding.get_word_vector(w) for w in words], device=device)
txt = txt.unsqueeze(1)
txt = txt.repeat(1, img.size(0), 1)
len_txt = torch.tensor([len(words)], dtype=torch.long, device=device)
len_txt = len_txt.repeat(img.size(0))
output, _ = G(img, (txt, len_txt))
out_filename = 'output_%03d.jpg' % i
save_image(output.mul(0.5).add(0.5), os.path.join(args.output_root, out_filename), pad_value=1)
html += '\n<tr><td>{}</td><td><img src="{}"></td></tr>'.format(text, out_filename)
with open(os.path.join(args.output_root, 'index.html'), 'w') as f:
f.write(html)
print('Done.')