-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdla.py
168 lines (129 loc) · 5.52 KB
/
dla.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import csv
import argparse
from uuid import uuid4
from random import random
from math import sqrt
from typing import Optional
import numpy as np
import matplotlib.pyplot as plt
def get_start_position(side: int, ax: Optional[int] = None) -> np.ndarray:
"""
Returns a random starting position [x, y] along one (randomly selected) of the grid's 4 axes.
:param side: The length of a side of the square grid
:param ax: The axis opposite which to bias movement
:return: The position coordinate
"""
cell = np.random.randint(0, side)
if ax is None: ax = np.random.randint(0, 3)
if ax == 0: return np.array([0, cell])
if ax == 2: return np.array([cell, 0])
if ax == 1: return np.array([side - 1, cell])
if ax == 3: return np.array([cell, side - 1])
raise ValueError(f"Invalid axis")
def get_next_step(side: int, point) -> np.ndarray:
"""
Randomly selects a step within the boundaries of the grid.
:param side: The length of a side of the square grid
:param point: The current location of the walker
:return: The next step
"""
# moves = [[-1, 0], [0, 1], [1, 0], [0, -1]]
moves = []
if point[0] != 0: moves.append([-1, 0])
if point[1] != 0: moves.append([0, -1])
if point[0] != side - 1: moves.append([1, 0])
if point[1] != side - 1: moves.append([0, 1])
return np.array(moves[np.random.choice(range(0, len(moves)))])
def distance_from_center(side: int, point) -> float:
"""
Calculates the Euclidean distance from the given point to the center of the grid.
:param side: The length of a side of the square grid
:param point: The current location of the walker
:return: The distance between the point and the center
"""
half = int(side / 2)
center = [half, half]
return np.linalg.norm(np.array(point) - np.array(center))
def is_occupied(g: np.ndarray, point) -> bool:
"""
Checks if the given point is occupied, i.e., is already part of the DLA cluster.
:param g: The grid
:param point: The coordinates [x, y] of the point to check
:return: True if the point is on the cluster, otherwise False
"""
y, x = point
return g[y, x] == 1
def should_stick(p: float = 0.5):
"""
Determines whether to "stick" to the cluster by flipping a coin biased with probability `p` of a positive result.
:param p: The probability to stick to the cluster.
:return: Whether to stick to the cluster.
"""
return random() < p
def dla(side: int, mass: int, prob: float):
"""
Runs a DLA simulation trial.
:param side: Length of a side of the square grid
:param mass: How many walkers to attach to the cluster
:param prob: Probability of a walker to stick to an adjacent cluster cell
"""
# unique ID to distinguish this trial
guid = str(uuid4())
# initialize the grid
grid = np.zeros((side, side))
# set the cluster seed in the middle of the grid
half = int(side / 2)
grid[half, half] = 1
# initialize the plot
fig = plt.figure()
fig.add_subplot(1, 1, 1)
plt.imshow(grid, interpolation='bicubic', cmap='viridis')
for walk in range(0, mass - 1):
# choose a random start position on a random axis
position = get_start_position(side=side)
# walk until we stick to the structure somewhere, keeping track of steps
steps = 0
while True:
steps += 1
# choose a next step
step = get_next_step(side=side, point=position)
next_position = position + step
# if the next location is beyond the grid boundaries, get another one
if not (0 <= next_position[0] < side and 0 <= next_position[1] < side):
print("Stepped out of bounds! This should never happen. Probably a bug in step selection logic.")
continue
# if the new location is already on the structure, choose whether to stick to it
if is_occupied(g=grid, point=next_position) and should_stick(p=prob):
grid[position[0], position[1]] = 1
print(f"Walk {walk} attached after {steps} steps")
break
else:
# otherwise keep walking
position = next_position
# compute cluster mass (i.e. size, S) and mean radius of gyration (R)
nonzero = np.nonzero(grid)
points = [(a, b) for a, b in zip(nonzero[0], nonzero[1])]
radii = [distance_from_center(side=side, point=point) for point in points]
S = len(points)
R = round(sqrt(sum([r ** 2 for r in radii]) / S), 3)
print(f"Finished trial {guid} on {side}x{side} grid with {mass} walks, S = {S}, R = {R}")
# save S and R to CSV
with open(f"{guid}.csv", 'w') as file:
writer = csv.writer(file)
writer.writerow([S, R])
# save the grid to PNG
plt.text(half, int(half / 5), f"S = {S}, R = {R}", color='green')
plt.imshow(grid, interpolation='bicubic', cmap='viridis')
plt.show()
fig.savefig(f"{guid}.png")
if __name__ == '__main__':
# parse arguments
ap = argparse.ArgumentParser()
ap.add_argument("-s", "--side", type=int, default=100, help="Length of a side of the square grid")
ap.add_argument("-m", "--mass", type=int, default=100, help="How many walkers to attach to the cluster")
ap.add_argument("-p", "--prob", type=float, default=1.0, help="Probability of a walker to stick to an adjacent cluster cell")
args = vars(ap.parse_args())
# run the DLA simulation
dla(side=int(args['side']),
mass=int(args['mass']),
prob=int(args['prob']))