-
Notifications
You must be signed in to change notification settings - Fork 0
/
20-solutions-use-case-1.Rmd
426 lines (347 loc) · 10.4 KB
/
20-solutions-use-case-1.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
---
output: html_document
editor_options:
chunk_output_type: console
---
# Solutions chapter 8 - use case 1 {#use-case-1-solutions}
Solutions to exercises of chapter \@ref(use-case-1).
## Preparation
### Load required libraries
```{r}
library(caret)
library(doMC)
library(corrplot)
library(rpart.plot)
library(pROC)
```
### Define SVM model
```{r echo=T}
svmRadialE1071 <- list(
label = "Support Vector Machines with Radial Kernel - e1071",
library = "e1071",
type = c("Regression", "Classification"),
parameters = data.frame(parameter="cost",
class="numeric",
label="Cost"),
grid = function (x, y, len = NULL, search = "grid")
{
if (search == "grid") {
out <- expand.grid(cost = 2^((1:len) - 3))
}
else {
out <- data.frame(cost = 2^runif(len, min = -5, max = 10))
}
out
},
loop=NULL,
fit=function (x, y, wts, param, lev, last, classProbs, ...)
{
if (any(names(list(...)) == "probability") | is.numeric(y)) {
out <- e1071::svm(x = as.matrix(x), y = y, kernel = "radial",
cost = param$cost, ...)
}
else {
out <- e1071::svm(x = as.matrix(x), y = y, kernel = "radial",
cost = param$cost, probability = classProbs, ...)
}
out
},
predict = function (modelFit, newdata, submodels = NULL)
{
predict(modelFit, newdata)
},
prob = function (modelFit, newdata, submodels = NULL)
{
out <- predict(modelFit, newdata, probability = TRUE)
attr(out, "probabilities")
},
predictors = function (x, ...)
{
out <- if (!is.null(x$terms))
predictors.terms(x$terms)
else x$xNames
if (is.null(out))
out <- names(attr(x, "scaling")$x.scale$`scaled:center`)
if (is.null(out))
out <- NA
out
},
tags = c("Kernel Methods", "Support Vector Machines", "Regression", "Classifier", "Robust Methods"),
levels = function(x) x$levels,
sort = function(x)
{
x[order(x$cost), ]
}
)
```
### Setup parallel processing
```{r}
registerDoMC(detectCores())
getDoParWorkers()
```
### Load data
```{r}
load("data/malaria/malaria.RData")
```
Inspect objects that have been loaded into R session
```{r}
ls()
class(morphology)
dim(morphology)
names(morphology)
class(infectionStatus)
summary(as.factor(infectionStatus))
class(stage)
summary(as.factor(stage))
```
###Data splitting
Partition data into a training and test set using the **createDataPartition** function
```{r}
set.seed(42)
trainIndex <- createDataPartition(y=stage, times=1, p=0.7, list=F)
infectionStatusTrain <- infectionStatus[trainIndex]
stageTrain <- stage[trainIndex]
morphologyTrain <- morphology[trainIndex,]
infectionStatusTest <- infectionStatus[-trainIndex]
stageTest <- stage[-trainIndex]
morphologyTest <- morphology[-trainIndex,]
```
## Assess data quality
### Zero and near-zero variance predictors
The function **nearZeroVar** identifies predictors that have one unique value. It also diagnoses predictors having both of the following characteristics:
* very few unique values relative to the number of samples
* the ratio of the frequency of the most common value to the frequency of the 2nd most common value is large.
Such zero and near zero-variance predictors have a deleterious impact on modelling and may lead to unstable fits.
```{r}
nearZeroVar(morphologyTrain, saveMetrics = T)
```
There are no zero variance or near zero variance predictors in our data set.
### Are all predictors on the same scale?
```{r out.width='100%', fig.asp=2, fig.align='center', fig.show='hold', echo=T}
featurePlot(x = morphologyTrain,
y = stageTrain,
plot = "box",
## Pass in options to bwplot()
scales = list(y = list(relation="free"),
x = list(rot = 90)),
layout = c(5,5))
```
The variables in this data set are on different scales. In this situation it is important to centre and scale each predictor. A predictor variable is centered by subtracting the mean of the predictor from each value. To scale a predictor variable, each value is divided by its standard deviation. After centring and scaling the predictor variable has a mean of 0 and a standard deviation of 1.
### Redundancy from correlated variables
Examine pairwise correlations of predictors to identify redundancy in data set
```{r}
corMat <- cor(morphologyTrain)
corrplot(corMat, order="hclust", tl.cex=1)
```
Find highly correlated predictors
```{r}
highCorr <- findCorrelation(corMat, cutoff=0.75)
length(highCorr)
names(morphologyTrain)[highCorr]
```
### Skewness
Observations grouped by infection status:
```{r}
featurePlot(x = morphologyTrain,
y = infectionStatusTrain,
plot = "density",
## Pass in options to xyplot() to
## make it prettier
scales = list(x = list(relation="free"),
y = list(relation="free")),
adjust = 1.5,
pch = "|",
layout = c(5, 5),
auto.key = list(columns = 2))
```
Observations grouped by infection stage:
```{r}
featurePlot(x = morphologyTrain,
y = stageTrain,
plot = "density",
## Pass in options to xyplot() to
## make it prettier
scales = list(x = list(relation="free"),
y = list(relation="free")),
adjust = 1.5,
pch = "|",
layout = c(5, 5),
auto.key = list(columns = 2))
```
## Infection status (two-class problem)
### Model training and parameter tuning
All of the models we are going to use have a single tuning parameter. For each model we will use repeated cross validation to try 10 different values of the tuning parameter.
For each model let's do five-fold cross-validation a total of five times. To make the analysis reproducible we need to specify the seed for each resampling iteration.
```{r}
set.seed(42)
seeds <- vector(mode = "list", length = 26)
for(i in 1:25) seeds[[i]] <- sample.int(1000, 10)
seeds[[26]] <- sample.int(1000,1)
train_ctrl_infect_status <- trainControl(method="repeatedcv",
number = 5,
repeats = 5,
seeds = seeds,
summaryFunction = twoClassSummary,
classProbs = TRUE)
```
### KNN
Train knn model:
```{r}
knnFit <- train(morphologyTrain, infectionStatusTrain,
method="knn",
preProcess = c("center", "scale"),
#tuneGrid=tuneParam,
tuneLength=10,
trControl=train_ctrl_infect_status)
knnFit
plot(knnFit)
```
### SVM
Train svm model:
```{r}
svmFit <- train(morphologyTrain, infectionStatusTrain,
method=svmRadialE1071,
preProcess = c("center", "scale"),
#tuneGrid=tuneParam,
tuneLength=10,
trControl=train_ctrl_infect_status)
svmFit
plot(svmFit, scales = list(x = list(log =2)))
```
### Decision tree
Train decision tree model:
```{r}
dtFit <- train(morphologyTrain, infectionStatusTrain,
method="rpart",
preProcess = c("center", "scale"),
#tuneGrid=tuneParam,
tuneLength=10,
trControl=train_ctrl_infect_status)
dtFit
plot(dtFit)
prp(dtFit$finalModel)
```
### Random forest
```{r}
rfFit <- train(morphologyTrain, infectionStatusTrain,
method="rf",
preProcess = c("center", "scale"),
#tuneGrid=tuneParam,
tuneLength=10,
trControl=train_ctrl_infect_status)
rfFit
plot(rfFit)
```
### Compare models
Make a list of our models
```{r}
model_list <- list(knn=knnFit,
svm=svmFit,
decisionTree=dtFit,
randomForest=rfFit)
```
Collect resampling results for each model
```{r}
resamps <- resamples(model_list)
resamps
summary(resamps)
```
```{r}
bwplot(resamps)
```
### Predict test set using our best model
```{r}
test_pred <- predict(svmFit, morphologyTest)
confusionMatrix(test_pred, infectionStatusTest)
```
### ROC curve
```{r}
svmProbs <- predict(svmFit, morphologyTest, type="prob")
head(svmProbs)
```
```{r}
svmROC <- roc(infectionStatusTest, svmProbs[,"infected"])
auc(svmROC)
```
```{r}
plot(svmROC)
```
## Discrimination of infective stages (multi-class problem)
### Define cross-validation procedure
```{r}
train_ctrl_stage <- trainControl(method="repeatedcv",
number = 5,
repeats = 5,
seeds = seeds)
```
### KNN
Train knn model with all variables:
```{r}
knnFit <- train(morphologyTrain, stageTrain,
method="knn",
preProcess = c("center", "scale"),
#tuneGrid=tuneParam,
tuneLength=10,
trControl=train_ctrl_stage)
knnFit
plot(knnFit)
```
### SVM
Train SVM model with all variables:
```{r}
svmFit <- train(morphologyTrain, stageTrain,
method=svmRadialE1071,
preProcess = c("center", "scale"),
#tuneGrid=tuneParam,
tuneLength=10,
trControl=train_ctrl_stage)
svmFit
plot(svmFit, scales = list(x = list(log =2)))
```
### Decision tree
Train decision tree model with all variables:
```{r}
dtFit <- train(morphologyTrain, stageTrain,
method="rpart",
preProcess = c("center", "scale"),
#tuneGrid=tuneParam,
tuneLength=10,
trControl=train_ctrl_stage)
dtFit
plot(dtFit)
prp(dtFit$finalModel)
```
### Random forest
Train random forest model with all variables:
```{r}
rfFit <- train(morphologyTrain, stageTrain,
method="rf",
preProcess = c("center", "scale"),
#tuneGrid=tuneParam,
tuneLength=10,
trControl=train_ctrl_stage)
rfFit
plot(rfFit)
```
### Compare models
Make a list of our models
```{r}
model_list <- list(knn=knnFit,
svm=svmFit,
decisionTree=dtFit,
randomForest=rfFit)
```
Collect resampling results for each model
```{r}
resamps <- resamples(model_list)
resamps
summary(resamps)
```
```{r}
bwplot(resamps)
```
### Predict test set using our best model
```{r}
test_pred <- predict(rfFit, morphologyTest)
confusionMatrix(test_pred, stageTest)
```