-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathareas_by_rank_script.py
127 lines (111 loc) · 4.92 KB
/
areas_by_rank_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import pdb
"""
Created on Wed Aug 27 23:17:01 2014
@author: rkp
Analyze properties of specific brain areas with extreme ranks according to
specific criteria.
"""
import numpy as np
import matplotlib.pyplot as plt
import collect_areas
import network_gen
import area_compute
import network_viz
import area_plot
# Network generation parameters
p_th = .01 # P-value threshold
w_th = 0 # Weight-value threshold
calc_nets = True
calc_features = True
show_example_plots = True
show_stat_plots = False
if calc_nets:
# Set relative directory path to linear model & ontology
dir_LM = '../friday-harbor/linear_model'
# Load weights & p-values
W, P, row_labels, col_labels = network_gen.load_weights(dir_LM)
# Threshold weights according to weights & p-values
W_net, mask = network_gen.threshold(W, P, p_th=p_th, w_th=w_th)
# Set weights to zero if they don't satisfy threshold criteria
W_net[W_net == -1] = 0.
# Set diagonal weights to zero
np.fill_diagonal(W_net, 0)
# Put everything in a dictionary
W_net_dict = {'row_labels': row_labels, 'col_labels': col_labels,
'data': W_net}
# Convert to networkx graph object
G = network_gen.import_weights_to_graph(W_net_dict)
# Collect & sort areas & edges according to various attributes
sorted_areas = collect_areas.collect_and_sort(G, W_net, labels=row_labels,
print_out=False)
if calc_features:
# Compute feature dictionary for all areas
area_dict = area_compute.get_feature_dicts(G.nodes(), G, W_net, row_labels)
if show_example_plots:
# Visualize individual areas & their cxns
num_top_deg = 1
for top_deg_idx in [1]:
# Get pair of neighbors for each area
area0 = sorted_areas['ccoeff_labels'][2 * top_deg_idx]
area1 = sorted_areas['ccoeff_labels'][2 * top_deg_idx + 1]
neighbors0 = area_dict[area0]['neighbors']
neighbors1 = area_dict[area1]['neighbors']
# Get edges for each area
edges0 = [(area0, areaX) for areaX in neighbors0]
edges1 = [(area1, areaX) for areaX in neighbors1]
# Put areas and neighbors together & remove duplicates
nodes = [area0, area1] + neighbors0 + neighbors1
edges = edges0 + edges1
nodes = list(np.unique(nodes))
edges = list(np.unique(edges))
# Get remaining nodes
rem_nodes = [area for area in sorted_areas['degree_labels']
if area not in nodes]
# Make combined list
all_nodes = nodes + rem_nodes
# Get volumes
all_vols = [area_dict[node]['volume'] for node in all_nodes]
all_vols = np.array(all_vols)
all_vols *= (1000. / all_vols.max())
# Get centroids
all_centroids = [area_dict[node]['centroid'] for node in all_nodes]
all_centroids = np.array(all_centroids)
# Swap columns so that S <-> I is on z axis
all_centroids = all_centroids.take([0, 2, 1], 1)
all_centroids[:, 2] *= -1
# Get logical indices of area nodes
neighbor_idxs = np.array([name in nodes for name in all_nodes])
area_idxs = np.array([name in [area0, area1] for name in all_nodes])
# Set sizes, colors, and alphas
node_sizes = all_vols
edge_sizes = 2 * np.ones((len(edges),))
node_colors = np.array(['WhiteSmoke' for node_idx in
range(len(all_nodes))])
node_colors[neighbor_idxs] = '#00B200'
node_colors[area_idxs] = 'DodgerBlue'
edge_colors = np.array(['#1565B2' for edge_idx in range(len(edges))])
node_alphas = .2 * np.ones((len(all_nodes),), dtype=float)
node_alphas[neighbor_idxs] = .5
node_alphas[area_idxs] = .8
edge_alphas = .6 * np.ones((len(edges),), dtype=float)
# Plot 3D nodes
network_viz.plot_3D_network(node_names=nodes,
node_positions=all_centroids,
node_label_set=[False] * len(all_nodes),
node_sizes=node_sizes,
node_colors=node_colors,
node_alpha=node_alphas,
edges=edges,
edge_label_set=[False] * len(edges),
edge_colors=edge_colors,
edge_alpha=edge_alphas,
edge_sizes=edge_sizes,
save_movie='./movie/images/')
if show_stat_plots:
feats_lists = [[['inj_volume', 'degree'], ['inj_volume', 'out_deg']],
[['degree', 'node_btwn'], ['degree', 'ccoeff']]]
for feats in feats_lists:
fig, axs = plt.subplots(1, len(feats))
for ax_idx, ax in enumerate(axs):
area_plot.scatter_2D(ax, area_dict, feats[ax_idx][0],
feats[ax_idx][1], s=50, c='r')