-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtsne.py
159 lines (130 loc) · 4.51 KB
/
tsne.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#
# tsne.py
#
# Implementation of t-SNE in Python. The implementation was tested on Python 2.5.1, and it requires a working
# installation of NumPy. The implementation comes with an example on the MNIST dataset. In order to plot the
# results of this example, a working installation of matplotlib is required.
# The example can be run by executing: ipython tsne.py -pylab
#
#
# Created by Laurens van der Maaten on 20-12-08.
# Copyright (c) 2008 Tilburg University. All rights reserved.
import numpy as np
import matplotlib.pyplot as plt
def Hbeta(D = np.array([]), beta = 1.0):
"""Compute the perplexity and the P-row for a specific value of the precision of a Gaussian distribution."""
# Compute P-row and corresponding perplexity
P = np.exp(-D.copy() * beta)
sumP = sum(P)
H = np.log(sumP) + beta * np.sum(D * P) / sumP
P = P / sumP
return H, P
def x2p(X = np.array([]), tol = 1e-5, perplexity = 30.0):
"""Performs a binary search to get P-values in such a way that each conditional Gaussian has the same perplexity."""
# Initialize some variables
print "Computing pairwise distances..."
(n, d) = X.shape
sum_X = np.sum(np.square(X), 1)
D = np.add(np.add(-2 * np.dot(X, X.T), sum_X).T, sum_X)
P = np.zeros((n, n))
beta = np.ones((n, 1))
logU = np.log(perplexity)
# Loop over all datapoints
for i in range(n):
# Print progress
if i % 500 == 0:
print "Computing P-values for point ", i, " of ", n, "..."
# Compute the Gaussian kernel and entropy for the current precision
betamin = -np.inf;
betamax = np.inf
Di = D[i, np.concatenate((np.r_[0:i], np.r_[i+1:n]))]
(H, thisP) = Hbeta(Di, beta[i])
# Evaluate whether the perplexity is within tolerance
Hdiff = H - logU
tries = 0
while np.abs(Hdiff) > tol and tries < 50:
# If not, increase or decrease precision
if Hdiff > 0:
betamin = beta[i]
if betamax == np.inf or betamax == -np.inf:
beta[i] = beta[i] * 2
else:
beta[i] = (beta[i] + betamax) / 2
else:
betamax = beta[i]
if betamin == np.inf or betamin == -np.inf:
beta[i] = beta[i] / 2
else:
beta[i] = (beta[i] + betamin) / 2
# Recompute the values
(H, thisP) = Hbeta(Di, beta[i])
Hdiff = H - logU
tries = tries + 1
# Set the final row of P
P[i, np.concatenate((np.r_[0:i], np.r_[i+1:n]))] = thisP
# Return final P-matrix
print "Mean value of sigma: ", np.mean(np.sqrt(1 / beta))
return P
def pca(X = np.array([]), no_dims = 50):
"""Runs PCA on the NxD array X in order to reduce its dimensionality to no_dims dimensions."""
print "Preprocessing the data using PCA..."
(n, d) = X.shape
X = X - np.tile(np.mean(X, 0), (n, 1))
(l, M) = np.linalg.eig(np.dot(X.T, X))
Y = np.dot(X, M[:,0:no_dims]);
return Y
def tsne(X = np.array([]), no_dims = 2, initial_dims = 50, perplexity = 30.0,max_iter=2000):
"""Runs t-SNE on the dataset in the NxD array X to reduce its dimensionality to no_dims dimensions.
The syntaxis of the function is Y = tsne.tsne(X, no_dims, perplexity), where X is an NxD NumPy array."""
# Check inputs
if X.dtype != "float64":
print "Error: array X should have type float64."
return -1
# Initialize variables
X = pca(X, initial_dims)
(n, d) = X.shape
initial_momentum = 0.5
final_momentum = 0.8
eta = 500
min_gain = 0.01
Y = np.random.randn(n, no_dims)
dY = np.zeros((n, no_dims))
iY = np.zeros((n, no_dims))
gains = np.ones((n, no_dims))
# Compute P-values
P = x2p(X, 1e-5, perplexity)
P = P + np.transpose(P)
P = P / np.sum(P)
P = P * 4 # early exaggeration
P = np.maximum(P, 1e-12)
# Run iterations
for iter in range(max_iter):
# Compute pairwise affinities
sum_Y = np.sum(np.square(Y), 1)
num = 1 / (1 + np.add(np.add(-2 * np.dot(Y, Y.T), sum_Y).T, sum_Y))
num[range(n), range(n)] = 0
Q = num / np.sum(num)
Q = np.maximum(Q, 1e-12)
# Compute gradient
PQ = P - Q
for i in range(n):
dY[i,:] = np.sum(np.tile(PQ[:,i] * num[:,i], (no_dims, 1)).T * (Y[i,:] - Y), 0)
# Perform the update
if iter < 20:
momentum = initial_momentum
else:
momentum = final_momentum
gains = (gains + 0.2) * ((dY > 0) != (iY > 0)) + (gains * 0.8) * ((dY > 0) == (iY > 0))
gains[gains < min_gain] = min_gain
iY = momentum * iY - eta * (gains * dY)
Y = Y + iY
Y = Y - np.tile(np.mean(Y, 0), (n, 1))
# Compute current value of cost function
if (iter + 1) % 10 == 0:
C = np.sum(P * np.log(P / Q));
print "Iteration ", (iter + 1), ": error is ", C
# Stop lying about P-values
if iter == 100:
P = P / 4
# Return solution
return Y