Skip to content

Latest commit

 

History

History
282 lines (213 loc) · 12 KB

README.md

File metadata and controls

282 lines (213 loc) · 12 KB

Investigating U-NETS With Various Intermediate Blocks For Spectrogram-based Singing Voice Separation

A Pytorch Implementation of the paper "Investigating U-NETS With Various Intermediate Blocks For Spectrogram-based Singing Voice Separation (ISMIR 2020)"

Updates

Installation

conda install pytorch=1.6 cudatoolkit=10.2 -c pytorch
conda install -c conda-forge ffmpeg librosa
conda install -c anaconda jupyter
pip install musdb museval pytorch_lightning effortless_config wandb pydub nltk spacy 

Dataset

  1. Download Musdb18
  2. Unzip files
  3. We recommend you to use the wav file mode for the fast data preparation.
    musdbconvert path/to/musdb-stems-root path/to/new/musdb-wav-root

Demonstration: A Pretrained Model (TFC_TDF_Net (large))

Colab Link

Tutorial

1. activate your conda

conda activate yourcondaname

2. Training a default UNet with TFC_TDFs

python main.py --musdb_root ../repos/musdb18_wav --musdb_is_wav True --filed_mode True --target_name vocals --mode train --gpus 4 --distributed_backend ddp --sync_batchnorm True --pin_memory True --num_workers 32 --precision 16 --run_id debug --optimizer adam --lr 0.001 --save_top_k 3 --patience 100 --min_epochs 1000 --max_epochs 2000 --n_fft 2048 --hop_length 1024 --num_frame 128  --train_loss spec_mse --val_loss raw_l1 --model tfc_tdf_net  --spec_est_mode mapping --spec_type complex --n_blocks 7 --internal_channels 24  --n_internal_layers 5 --kernel_size_t 3 --kernel_size_f 3 --min_bn_units 16 --tfc_tdf_activation relu  --first_conv_activation relu --last_activation identity --seed 2020

3. Evaluation

After training is done, checkpoints are saved in the following directory.

etc/modelname/run_id/*.ckpt

For evaluation,

python main.py --musdb_root ../repos/musdb18_wav --musdb_is_wav True --filed_mode True --target_name vocals --mode eval --gpus 1 --pin_memory True --num_workers 64 --precision 32 --run_id debug --batch_size 4 --n_fft 2048 --hop_length 1024 --num_frame 128 --train_loss spec_mse --val_loss raw_l1 --model tfc_tdf_net --spec_est_mode mapping --spec_type complex --n_blocks 7 --internal_channels 24 --n_internal_layers 5 --kernel_size_t 3 --kernel_size_f 3 --min_bn_units 16 --tfc_tdf_activation relu --first_conv_activation relu --last_activation identity --log wandb --ckpt vocals_epoch=891.ckpt

Below is the result.

wandb:          test_result/agg/vocals_SDR 6.954695
wandb:   test_result/agg/accompaniment_SAR 14.3738075
wandb:          test_result/agg/vocals_SIR 15.5527
wandb:   test_result/agg/accompaniment_SDR 13.561705
wandb:   test_result/agg/accompaniment_ISR 22.69328
wandb:   test_result/agg/accompaniment_SIR 18.68421
wandb:          test_result/agg/vocals_SAR 6.77698
wandb:          test_result/agg/vocals_ISR 12.45371

4. Interactive Report (wandb)

wandb report

Indermediate Blocks

Please see this document.

How to use

1. Training

1.1. Intermediate Block independent Parameters

1.1.A. General Parameters
  • --musdb_root musdb path
  • --musdb_is_wav whether the path contains wav files or not
  • --filed_mode whether you want to use filed mode or not. recommend to use it for the fast data preparation.
  • --target_name one of vocals, drum, bass, other
1.1.B. Training Environment
  • --mode train or eval
  • --gpus number of gpus
    • (WARN) gpus > 1 might be problematic when evaluating models.
  • distributed_backend use this option only when you are using multi-gpus. distributed backend, one of ddp, dp, ... we recommend you to use ddp.
  • --sync_batchnorm True only when you are using ddp
  • --pin_memory
  • --num_workers
  • --precision 16 or 32
  • --dev_mode whether you want a developement mode or not. dev mode is much faster because it uses only a small subset of the dataset.
  • --run_id (optional) directory path where you want to store logs and etc. if none then the timestamp.
  • --log True for default pytorch lightning log. wandb is also available.
  • --seed random seed for a deterministic result.
1.1.C. Training hyperparmeters
  • --batch_size trivial :)
  • --optimizer adam, rmsprop, etc
  • --lr learning rate
  • --save_top_k how many top-k epochs you want to save the training state (criterion: validation loss)
  • --patience early stop control parameter. see pytorch lightning docs.
  • --min_epochs trivial :)
  • --max_epochs trivial :)
  • --model
    • tfc_tdf_net
    • tfc_net
    • tdc_net
1.1.D. Fourier parameters
  • --n_fft
  • --hop_length
  • num_frame number of frames (time slices)
1.1.F. criterion
  • --train_loss: spec_mse, raw_l1, etc...
  • --val_loss: spec_mse, raw_l1, etc...

1.2. U-net Parameters

  • --n_blocks: number of intermediate blocks. must be an odd integer. (default=7)
  • --input_channels:
    • if you use two-channeled complex-valued spectrogram, then 4
    • if you use two-channeled manginutde spectrogram, then 2
  • --internal_channels: number of internal chennels (default=24)
  • --first_conv_activation: (default='relu')
  • --last_activation: (default='sigmoid')
  • --t_down_layers: list of layer where you want to doubles/halves the time resolution. if None, ds/us applied to every single layer. (default=None)
  • --f_down_layers: list of layer where you want to doubles/halves the frequency resolution. if None, ds/us applied to every single layer. (default=None)

1.3. SVS Framework

  • --spec_type: type of a spectrogram. ['complex', 'magnitude']

  • --spec_est_mode: spectrogram estimation method. ['mapping', 'masking']

  • CaC Framework

    • you can use cac framework [1] by setting
      • --spec_type complex --spec_est_mode mapping --last_activation identity
  • Mag-only Framework

    • if you want to use the traditional magnitude-only estimation with sigmoid, then try
      • --spec_type magnitude --spec_est_mode masking --last_activation sigmoid
    • you can also change the last activation as follows
      • --spec_type magnitude --spec_est_mode masking --last_activation relu
  • Alternatives

    • you can build an svs framework with any combination of these parameters
    • e.g. --spec_type complex --spec_est_mode masking --last_activation tanh

1.4. Block-dependent Parameters

1.4.A. TDF Net
  • --bn_factor: bottleneck factor $bn$ (default=16)
  • --min_bn_units: when target frequency domain size is too small, we just use this value instead of $\frac{f}{bn}$. (default=16)
  • --bias: (default=False)
  • --tdf_activation: activation function of each block (default=relu)

1.4.B. TDC Net
  • --n_internal_layers: number of 1-d CNNs in a block (default=5)
  • --kernel_size_f: size of kernel of frequency-dimension (default=3)
  • --tdc_activation: activation function of each block (default=relu)

1.4.C. TFC Net
  • --n_internal_layers: number of 1-d CNNs in a block (default=5)
  • --kernel_size_t: size of kernel of time-dimension (default=3)
  • --kernel_size_f: size of kernel of frequency-dimension (default=3)
  • --tfc_activation: activation function of each block (default=relu)

1.4.D. TFC_TDF Net
  • --n_internal_layers: number of 1-d CNNs in a block (default=5)
  • --kernel_size_t: size of kernel of time-dimension (default=3)
  • --kernel_size_f: size of kernel of frequency-dimension (default=3)
  • --tfc_tdf_activation: activation function of each block (default=relu)
  • --bn_factor: bottleneck factor $bn$ (default=16)
  • --min_bn_units: when target frequency domain size is too small, we just use this value instead of $\frac{f}{bn}$. (default=16)
  • --tfc_tdf_bias: (default=False)

1.4.E. TDC_RNN Net
  • '--n_internal_layers' : number of 1-d CNNs in a block (default=5)

  • '--kernel_size_f' : size of kernel of frequency-dimension (default=3)

  • '--bn_factor_rnn' : (default=16)

  • '--num_layers_rnn' : (default=1)

  • '--bias_rnn' : bool, (default=False)

  • '--min_bn_units_rnn' : (default=16)

  • '--bn_factor_tdf' : (default=16)

  • '--bias_tdf' : bool, (default=False)

  • '--tdc_rnn_activation' : (default='relu')

current bug - cuda error occurs when tdc_rnn net with precision 16

Reproducible Experimental Results

  • TFC_TDF_large
    • parameters
    --musdb_root ../repos/musdb18_wav
    --musdb_is_wav True
    --filed_mode True
    
    --gpus 4
    --distributed_backend ddp
    --sync_batchnorm True
    
    --num_workers 72
    --train_loss spec_mse
    --val_loss raw_l1
    --batch_size 12
    --precision 16
    --pin_memory True
    --num_worker 72         
    --save_top_k 3
    --patience 200
    --run_id debug_large
    --log wandb
    --min_epochs 2000
    --max_epochs 3000
    
    --optimizer adam
    --lr 0.001
    
    --model tfc_tdf_net
    --n_fft 4096
    --hop_length 1024
    --num_frame 128
    --spec_type complex
    --spec_est_mode mapping
    --last_activation identity
    --n_blocks 9
    --internal_channels 24
    --n_internal_layers 5
    --kernel_size_t 3 
    --kernel_size_f 3 
    --tfc_tdf_bias True
    --seed 2020
    
    
    • training
    python main.py --musdb_root ../repos/musdb18_wav --musdb_is_wav True --filed_mode True --gpus 4 --distributed_backend ddp --sync_batchnorm True --num_workers 72 --train_loss spec_mse --val_loss raw_l1 --batch_size 24 --precision 16 --pin_memory True --num_worker 72 --save_top_k 3 --patience 200 --run_id debug_large --log wandb --min_epochs 2000 --max_epochs 3000 --optimizer adam --lr 0.001 --model tfc_tdf_net --n_fft 4096 --hop_length 1024 --num_frame 128 --spec_type complex --spec_est_mode mapping --last_activation identity --n_blocks 9 --internal_channels 24 --n_internal_layers 5 --kernel_size_t 3 --kernel_size_f 3 --tfc_tdf_bias True --seed 2020
    • evaluation result (epoch 2007)
      • SDR 8.029
      • ISR 13.708
      • SIR 16.409
      • SAR 7.533

Interactive Report (wandb)

wandb report

You can cite this paper as follows:

@inproceedings{choi_2020, Author = {Choi, Woosung and Kim, Minseok and Chung, Jaehwa and Lee, Daewon and Jung, Soonyoung}, Booktitle = {21th International Society for Music Information Retrieval Conference}, Editor = {ISMIR}, Month = {OCTOBER}, Title = {Investigating U-Nets with various intermediate blocks for spectrogram-based singing voice separation.}, Year = {2020}}

Reference

[1] Woosung Choi, Minseok Kim, Jaehwa Chung, DaewonLee, and Soonyoung Jung, “Investigating u-nets with various intermediate blocks for spectrogram-based singingvoice separation.,” in 21th International Society for Music Information Retrieval Conference, ISMIR, Ed., OCTOBER 2020.