-
Notifications
You must be signed in to change notification settings - Fork 34
/
demo.py
249 lines (217 loc) · 10.2 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import deep_3drecon
import face_alignment
import cv2
import os
import numpy as np
import librosa
import torch
import math
import audio2motion
import render
import torch.nn as nn
import torchvision
import argparse
from align_img import align_lm68, align
parser = argparse.ArgumentParser()
parser.add_argument("--in_img", help = "input portrait", default='example/example.png', type=str)
parser.add_argument("--in_audio", help="input audio", default='example/example.wav', type=str)
parser.add_argument("--output_path", help="output path of videos", default='output', type=str)
conf = parser.parse_args()
def lm68_2_lm5(in_lm):
lm_idx = np.array([31,37,40,43,46,49,55]) - 1
lm = np.stack([in_lm[lm_idx[0],:],np.mean(in_lm[lm_idx[[1,2]],:],0),np.mean(in_lm[lm_idx[[3,4]],:],0),in_lm[lm_idx[5],:],in_lm[lm_idx[6],:]], axis = 0)
lm = lm[[1,2,0,3,4],:2]
return lm
def recon_texture(uv_file, img_file, out_path):
uv_img = cv2.imread(uv_file).astype(np.int32)
img = cv2.imread(img_file).astype(np.int32)
x = uv_img[:, :, 0].reshape(-1)
y = uv_img[:, :, 1].reshape(-1)
index = y * 256 + x
img = img.reshape(-1, 3)
texture = np.zeros((256 * 256, 3), dtype = np.int32)
texture_count = np.zeros((256 * 256), dtype = np.int32)
np.add.at(texture_count, index, 1)
np.add.at(texture, index, img)
texture_count[texture_count == 0] = 1
texture = texture / np.expand_dims(texture_count, 1)
texture = texture.reshape(256, 256, 3)
cv2.imwrite(out_path, texture)
def read_video(video_path):
cap = cv2.VideoCapture(video_path)
frame_list = []
while cap.isOpened():
ret, frame = cap.read()
if ret == False:
break
frame_list.append(frame)
return np.array(frame_list)
os.environ["CUDA_VISIBLE_DEVICES"]=str(0)
img_path = conf.in_img
audio_path = conf.in_audio
tmp_path = conf.output_path
if len(os.listdir(tmp_path)) != 0:
raise Exception("Output path must be empty")
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, network_size=4, device='cuda')
face_reconstructor = deep_3drecon.Reconstructor()
im_bgr = cv2.imread(img_path)
im_rgb = im_bgr[:, :, ::-1]
lm68 = fa.get_landmarks(im_rgb)[0]
lm5 = lm68_2_lm5(lm68)
coeff, align_img = face_reconstructor.recon_coeff(np.array([im_bgr]), np.array([lm5]), return_image = True)
# Due to one bug, we use tex_noise.png in our implementation, currently the tex_no_noise.mp4 is not used, which will be fixed further.
face_reconstructor.recon_texture_from_coeff(coeff, align_img, os.path.join(tmp_path, "tex_no_noise.mp4"), tmp_dir = tmp_path)
face_reconstructor.recon_uv_from_coeff(coeff, os.path.join(tmp_path, "uv_src.mp4"), tmp_dir = tmp_path)
align_img = align_img[0]
cv2.imwrite(os.path.join(tmp_path, "align.png"), align_img)
uv_img = read_video(os.path.join(tmp_path, "uv_src.mp4"))[0]
recon_texture(os.path.join(tmp_path, "0.png"), os.path.join(tmp_path, "align.png"), os.path.join(tmp_path, "tex_noise.png"))
tex_img = cv2.imread(os.path.join(tmp_path, "tex_noise.png")).astype(np.int32)
del fa
torch.cuda.empty_cache()
import deepspeech
deepspeech_prob = deepspeech.get_prob(audio_path)
del deepspeech
audio, sr = librosa.load(audio_path, sr = 16000)
audio_energy = librosa.feature.rms(y = audio, frame_length = 512, hop_length = 320, center = False)
audio_energy = np.transpose(audio_energy)
coeff_len = len(deepspeech_prob) // 2
coeff_array = np.tile(coeff, (coeff_len, 1))
y_len = len(coeff_array)
audio_clip_list = []
energy_clip_list = []
def get_sync_data(x, x_dim, y_left, y_right):
x_len = len(x)
x_left = math.floor(y_left * 50 / 25)
x_right = math.floor(y_right * 50 / 25)
pad_len = 80 - x_right + x_left
if pad_len % 2 == 0:
pad_left = pad_len // 2
pad_right = pad_len // 2
else:
pad_left = pad_len // 2
pad_right = pad_len - pad_left
x_left = x_left - pad_left
x_right = x_right + pad_right
if x_left < 0:
if x_right > x_len:
x_data = np.concatenate((np.tile(x[0], -1 * x_left).reshape(-1, x_dim), x, np.tile(x[-1], x_right - x_len).reshape(-1, x_dim)), axis = 0)
else:
x_data = x[0: x_right]
x_data = np.concatenate((np.tile(x[0], -1 * x_left).reshape(-1, x_dim), x_data), axis = 0)
elif x_right > x_len:
x_data = x[x_left: x_len]
x_data = np.concatenate((x_data, np.tile(x[-1], x_right - x_len).reshape(-1, x_dim)), axis = 0)
else:
x_data = x[x_left: x_right]
return x_data
for i in range(0, y_len, 8):
if i > y_len - 32:
y_left = y_len - 32
y_right = y_len
else:
y_left = i
y_right = i + 32
audio_clip = get_sync_data(deepspeech_prob, 29, y_left, y_right)
energy_clip = get_sync_data(audio_energy, 1, y_left, y_right)
audio_clip_list.append(audio_clip)
energy_clip_list.append(energy_clip)
audio_clip_list = np.array(audio_clip_list)
energy_clip_list = np.array(energy_clip_list)
audio_batch = torch.from_numpy(audio_clip_list).transpose(1, 2).float().cuda()
energy_batch = torch.from_numpy(energy_clip_list).transpose(1, 2).float().cuda()
sty_batch = torch.from_numpy(np.load("./example/sty.npy")).float().cuda()
torch.cuda.empty_cache()
# os.environ["CUDA_VISIBLE_DEVICES"]=str(1)
model = audio2motion.StyleFusionModel().cuda()
model.load_state_dict(torch.load("./audio2motion/model/backbone.pkl"), strict = True)
model.eval()
with torch.no_grad():
for idx in range(10):
sty_tmp = sty_batch[idx].unsqueeze(0).repeat(len(audio_batch), 1)
pred_exp_batch = model(audio_batch, energy_batch, sty_tmp)
y_len = len(coeff_array)
y_repeat = torch.zeros(y_len).int().cuda()
predict_exp_cat = torch.zeros((y_len, 64)).float().cuda()
for counter, i in enumerate(range(0, y_len, 8)):
if i > y_len - 32:
y_left = y_len - 32
y_right = y_len
else:
y_left = i
y_right = i + 32
y_repeat[y_left: y_right] += 1
predict_exp_cat[y_left: y_right] += pred_exp_batch[counter].transpose(0, 1)
y_repeat = y_repeat.float()
predict_exp_cat = predict_exp_cat / y_repeat.unsqueeze(1)
coeff_array[:, 80:144] = predict_exp_cat.detach().cpu().numpy()
np.save(os.path.join(tmp_path, "test_{}.npy".format(idx)), coeff_array)
face_reconstructor.recon_uv_from_coeff(coeff_array,
out_path = os.path.join(tmp_path, "test_uv_{}.mp4".format(idx)),
bg_path = os.path.join(tmp_path, "test_bg_{}.mp4".format(idx)),
tmp_dir = tmp_path
)
del model
del face_reconstructor
del audio_batch
del energy_batch
del sty_batch
del coeff_array
del predict_exp_cat
torch.cuda.empty_cache()
tex_encoder = render.UNet(9, 16).cuda()
tex_sampler = render.TexSampler().cuda()
face_unet = render.define_G(16, 3, 64, 'local').cuda()
tex_encoder.load_state_dict(torch.load("./render/model/tex_encoder.pkl"), strict = True)
face_unet.load_state_dict(torch.load("./render/model/face_unet.pkl"), strict = True)
tex_encoder.eval()
tex_sampler.eval()
face_unet.eval()
tex_img = torch.from_numpy(tex_img).float().permute(2, 0, 1) / 128 - 1
tex_img_batch = tex_img.unsqueeze(0).repeat(3, 1, 1, 1).cuda()
with torch.no_grad():
batch_size = 8
for idx in range(10):
uv_path = os.path.join(tmp_path, "test_uv_{}.mp4".format(idx))
bg_path = os.path.join(tmp_path, "test_bg_{}.mp4".format(idx))
bg_frames = np.array(read_video(bg_path))
uv_frames = np.array(read_video(uv_path))
uv_frames = torch.from_numpy(uv_frames).float().permute(0, 3, 1, 2) / 255
uv_img_batch = uv_frames[:, :2]
bg_img_batch = torch.from_numpy(bg_frames > 127).float()[:, :, :, 0].unsqueeze(1)
bg_img_batch, uv_img_batch, tex_img_batch = bg_img_batch.unsqueeze(0), uv_img_batch.unsqueeze(0), tex_img_batch.unsqueeze(0)
tex_img_batch = tex_img_batch.reshape(tex_img_batch.shape[0], -1, tex_img_batch.shape[3], tex_img_batch.shape[4]).cuda()
tex = tex_encoder(tex_img_batch)
pred_img_batch = torch.zeros((uv_img_batch.shape[0], uv_img_batch.shape[1], 3, uv_img_batch.shape[3], uv_img_batch.shape[4])).float()
start_idx = 0
while start_idx < pred_img_batch.shape[1]:
if start_idx + batch_size > pred_img_batch.shape[1]:
end_idx = pred_img_batch.shape[1]
else:
end_idx = start_idx + batch_size
bg_tmp_batch = bg_img_batch[:, start_idx: end_idx].cuda()
uv_tmp_batch = uv_img_batch[:, start_idx: end_idx].cuda()
bg_tmp_batch = bg_tmp_batch.reshape(-1, bg_tmp_batch.shape[2], bg_tmp_batch.shape[3], bg_tmp_batch.shape[4])
uv_tmp_batch = uv_tmp_batch.reshape(-1, uv_tmp_batch.shape[2], uv_tmp_batch.shape[3], uv_tmp_batch.shape[4])
tex_tmp = tex.unsqueeze(1).repeat(1, uv_tmp_batch.shape[0], 1, 1, 1)
tex_tmp = tex_tmp.reshape(-1, tex_tmp.shape[2], tex_tmp.shape[3], tex_tmp.shape[4])
sample_image = tex_sampler(uv_tmp_batch, tex_tmp)
pred_image = face_unet(sample_image) * (1 - bg_tmp_batch)
pred_img_batch[:, start_idx:end_idx] = pred_image.cpu()
start_idx += batch_size
pred_img_batch = pred_img_batch[0].cpu().detach()
pred_img_batch = torch.flip(pred_img_batch, dims = [1])
os.system("rm {}".format(os.path.join(tmp_path, "*.png")))
for i in range(len(pred_img_batch)):
torchvision.utils.save_image(pred_img_batch[i], "./{}/{}.png".format(tmp_path, i), normalize = True, range = (-1, 1))
os.system("ffmpeg -y -loglevel warning -framerate 25 -start_number 0 -i {}/%d.png -c:v libx264 -pix_fmt yuv420p -b:v 2000k {}/render_{}.mp4".format(tmp_path, tmp_path, idx))
os.system("ffmpeg -y -loglevel warning -i {} -i {} -map 0:v -map 1:a -c:v copy -shortest {}".format(
"{}/render_{}.mp4".format(tmp_path, idx),
audio_path,
"{}/result_{}.mp4".format(tmp_path, idx),
))
os.system("rm {}".format(os.path.join(tmp_path, "*.png")))
os.system("rm {}".format(os.path.join(tmp_path, "test_*")))
os.system("rm {}".format(os.path.join(tmp_path, "render_*")))
os.system("rm {}".format(os.path.join(tmp_path, "tex_no_noise.mp4")))
os.system("rm {}".format(os.path.join(tmp_path, "uv_src.mp4")))