Skip to content

Latest commit

 

History

History
381 lines (329 loc) · 17.8 KB

HashMap源码解析(jdk8).md

File metadata and controls

381 lines (329 loc) · 17.8 KB

HashMap源码解析(jdk8版)

HashMap允许key为null,也允许value为null
HashMap跟HashTable两个类是差不多的,除了HashTable是线程安全且不允许null值这一点外.

基本概念:HashMap底层是数组+链表(数组的每个值都是一条链表的头结点),1.8后加入了红黑树(当链表长度达到8就自动将该链表替换为红黑树),通过计算key的哈希码,在经过高位参与位运算计算得出键值对(将key和value包装起来的对象)所在的数组的下标,采用头插入法插入该位置的链表(若该位置是空的就直接插入)

HashMap的相关域:

    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; 

    static final int MAXIMUM_CAPACITY = 1 << 30;

    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    static final int TREEIFY_THRESHOLD = 8;

    static final int UNTREEIFY_THRESHOLD = 6;

    static final int MIN_TREEIFY_CAPACITY = 64;
  • DEFAULT_INITIAL_CAPACITY: 默认底层数组的初始大小(2^4),可通过构造参数指定

  • MAXIMUM_CAPACITY: 数组的最大长度(2^31),超过将替换为此值

  • DEFAULT_LOAD_FACTOR: 默认负载因子,为0.75,可通过构造参数指定

  • TREEIFY_THRESHOLD: 链表转换为红黑树的阙值,当链表长度达到8自动转为红黑树进行存储(前提是数组长度大于等于64)

  • UNTREEIFY_THRESHOLD: 红黑树转为链表的阙值,当红黑树结点个数减小到6时,自动转为链表存储

  • MIN_TREEIFY_CAPACITY: 链表进行树化的前提条件,数组长度要达到64或一上,在这之前只能通过数组扩容来减少链表长度

      transient Node<K,V>[] table;
    
      transient Set<Map.Entry<K,V>> entrySet;
    
      transient int size;
    
      transient int modCount;
    
      int threshold;
    
      final float loadFactor;
    
  • table: 底层数组,可动态扩容,数组长度为2的整数次方

  • size: 这个map中存放的键值对数目

  • modCount: 记录这个map数据结构发生改变的次数(发送插入删除或者链表与树相互转换的操作),由于fail-fast机制

  • threshold: 数组进行扩容的下个阙值(当前键值对数量达到这个值后进行resize()(扩容)操作)(threshold = capacity * load factor)

  • loadFactor: 实际的负载因子

哈希码计算方法hash(Object key)

    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
  • 局部变量h存放hashCode()放回的初始哈希码,通过h右移16位与h异或(右移后,前16位为0,异或不改变h的前16位值)得到最终的哈希吗.
    通过高位参与位运算可以减少数组长度较低时的哈希码冲突问题(取模时,高位变低位不变,冲突几率会变高)

链表结点的数据结构Node<K,V>

    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash; // 计算得到的hash码
        final K key;    // 键对象
        V value;        // 值对象
        Node<K,V> next; // 下一个结点
        方法略...
    }

树节点数据结构vTreeNode<K,V>

    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // 父亲节点
        TreeNode<K,V> left;    // 左子树
        TreeNode<K,V> right;   //右子树
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;            // 红色还是黑色
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        方法略...    
    }
  • 通过继承LinkedHashMap.Entry<K,V>,实际上间接继承了链表的Node<K,V>

获取value:get(Object key)

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;      //1
    }

    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab;
        Node<K,V> first, e;
        int n;
        K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {                        //2
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k)))) //3
                return first;
            if ((e = first.next) != null) {                                 //4
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }
  1. 计算key的哈希码,传入getNode方法,放回Node对象或者null
  2. 如果table为null,table是空的或者数组( (length-1)&hash )处的值为null,就返回null,否则进入3
  3. 检查第一个结点,若是指定的key,直接返回该结点,否则进入4
  4. 如果这个树/链表不止一个结点,先判断是树还是链表,再进行对应的结点查找,找到就返回,否则返回null.

增加键值对put(K key, V value)

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    /**
    * Implements Map.put and related methods
    *
    * @param hash hash for key
    * @param key the key
    * @param value the value to put
    * @param onlyIfAbsent if true, don't change existing value
    * @param evict if false, the table is in creation mode.
    * @return previous value, or null if none
    */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                boolean evict) {
        Node<K,V>[] tab;
        Node<K,V> p;
        int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)             //1
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)                      //2
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k)))) //3
                e = p;
            else if (p instanceof TreeNode)                             //4
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {                                                      //5
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {                         
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key                //6
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }                                                               //7
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }
  1. 如果数组为null或是空的,则resize()扩充容量
  2. 通过hash计算并位运算取摸获得数组下标,若该位置是空的,新建链表结点直接填坑然后跳到7,否则进入3
  3. 判断头结点的key跟要put进去的key是否同一个,是则将其引用赋给e,进入6,否则进入4
  4. 判断头结点是不是树结点,是则执行putTreeVal,若树中已存在该key,则直接返回该键值对(赋给e),否则新建并插入结点并返回null,然后进入6.如果不是树节点则进入5
  5. 在链表中遍历,如果不存在,就新建一个结点,然后是否达到树化的阙值,是就转化为树结构,之后跳到7.如果存在就把它的引用赋给e跳到6
  6. 在搜索到当前map中存在相同key时候将该键值对赋给e,在这里进行值的覆盖,并返回旧值
  7. 对改动进行计数,判断是否需要进行数组扩容,返回null

移除键值对remove(Object key)

    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }

    final Node<K,V> removeNode(int hash, Object key, Object value,
                            boolean matchValue, boolean movable) {
        Node<K,V>[] tab;
        Node<K,V> p;
        int n,index;
        if ((tab = table) != null && (n = tab.length) > 0 &&            //1
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e;
            K k;
            V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k)))) //2
                node = p;
            else if ((e = p.next) != null) {                            //3
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                            (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if (node != null && (!matchValue || (v = node.value) == value ||    //4
                                (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }
  1. 判断底层数组是否为null或者是空的,是就直接返回null,否则2
  2. 判断头结点是否就是要移除的键值对,是就赋给e,进入4,否则进入3
  3. 判断是树还是链表并进行相应遍历,找到符合的键值对,并赋给e,进入4,若查无,返回null
  4. 针对不同的存储结构进行相应的移除操作,并更新相关的计数值

链表的树化操作treeifyBin(Node<K,V>[] tab, int hash)

    /**
    * Replaces all linked nodes in bin at index for given hash unless
    * table is too small, in which case resizes instead.
    */
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }
  • 先将链表结点转化成树结点,构造成双向链表,在treeify进行红黑树的构造

扩容操作resize

    /**
    * Initializes or doubles table size.  If null, allocates in
    * accord with initial capacity target held in field threshold.
    * Otherwise, because we are using power-of-two expansion, the
    * elements from each bin must either stay at same index, or move
    * with a power of two offset in the new table.
    *
    * @return the table
    */
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {                           // 1
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&       // 2
                    oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold    // 3
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults // 4
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {                                                      // 5
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                    (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;                                                     // 6
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {                                                   // 7
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)                                         // 7-1
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)                             // 7-2
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order                                    // 7-3
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }
  1. 若底层数组长度大于等于允许的最大值,将扩容阙值设为MAX_INT,直接不做任何操作,直接返回原数组
  2. 如果底层数组长度是大于默认初始长度且当前长度*2小于允许的最大值,则将新的数组长度,扩容阙值都设为原来的两倍
  3. 当前数组未初始化,且扩容阙值已经初始化(不为0),将新的数组长度设定为扩容阙值,跳到5
  4. 当前数组与扩容阙值都未初始化,将新的数组长度和扩容阙值设为默认初始值
  5. 根据新的数组长度值计算新的扩容阙值,如果新的数组长度值或者新的阙值大于数组长度的允许最大值,则将其替换为MAX_INT,反之保留
  6. 将经过上述计算得到的新值进行更新(设置threshold为新值, 实例化一个新长度的底层数组)
  7. 遍历数组的每个坑位,将老数组的值搬运到新的数组中 7-1. 若该坑位只有一个结点,直接搬运到新数组对应坑位,需要重新计算下标,因为新数组的长度已经改变 7-2. 若该坑位放的是树,则调用对应方法进行换坑 7-3. 若该坑位是是链表,遍历这条链表,根据其hash&旧数组长度是0还是1分为两组,一组在新数组下标不变,另一组是原来下标+旧数组长度
    注: 因为每次扩容都是2扩容两倍,位运算时只增加一个高位(右数第oldCap个),按位与时,若键值对的右数第oldCap位是0则下标不会受扩容影响,若不是,则下标是原下标加上oldCap.

以上分析为个人理解,欢迎指正!

关于红黑树的实现与操作并没有深入代码层次解析,有兴趣可阅读 红黑树深入析及Java实现