forked from MaurizioFD/RecSys2019_DeepLearning_Evaluation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_WWW_17_NeuMF.py
235 lines (145 loc) · 8.03 KB
/
run_WWW_17_NeuMF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on 22/11/17
@author: Maurizio Ferrari Dacrema
"""
from Recommender_import_list import *
from Conferences.WWW.NeuMF_our_interface.NeuMF_RecommenderWrapper import NeuMF_RecommenderWrapper
from ParameterTuning.run_parameter_search import runParameterSearch_Collaborative
from ParameterTuning.SearchSingleCase import SearchSingleCase
from ParameterTuning.SearchAbstractClass import SearchInputRecommenderParameters
import traceback, multiprocessing, os
from functools import partial
import numpy as np
from Utils.print_results_latex_table import print_time_statistics_latex_table, print_results_latex_table, print_parameters_latex_table
from Utils.assertions_on_data_for_experiments import assert_implicit_data, assert_disjoint_matrices
from Utils.plot_popularity import plot_popularity_bias, save_popularity_statistics
def read_data_split_and_search_NeuCF(dataset_name):
from Conferences.WWW.NeuMF_our_interface.Movielens1M.Movielens1MReader import Movielens1MReader
from Conferences.WWW.NeuMF_our_interface.Pinterest.PinterestICCVReader import PinterestICCVReader
if dataset_name == "movielens1m":
dataset = Movielens1MReader()
elif dataset_name == "pinterest":
dataset = PinterestICCVReader()
output_folder_path = "result_experiments/{}/{}_{}/".format(CONFERENCE_NAME, ALGORITHM_NAME, dataset_name)
URM_train = dataset.URM_train.copy()
URM_validation = dataset.URM_validation.copy()
URM_test = dataset.URM_test.copy()
URM_test_negative = dataset.URM_test_negative.copy()
# Ensure IMPLICIT data and DISJOINT sets
assert_implicit_data([URM_train, URM_validation, URM_test, URM_test_negative])
assert_disjoint_matrices([URM_train, URM_validation, URM_test])
assert_disjoint_matrices([URM_train, URM_validation, URM_test_negative])
# If directory does not exist, create
if not os.path.exists(output_folder_path):
os.makedirs(output_folder_path)
algorithm_dataset_string = "{}_{}_".format(ALGORITHM_NAME, dataset_name)
plot_popularity_bias([URM_train + URM_validation, URM_test],
["URM train", "URM test"],
output_folder_path + algorithm_dataset_string + "popularity_plot")
save_popularity_statistics([URM_train + URM_validation, URM_test],
["URM train", "URM test"],
output_folder_path + algorithm_dataset_string + "popularity_statistics")
collaborative_algorithm_list = [
Random,
TopPop,
UserKNNCFRecommender,
ItemKNNCFRecommender,
P3alphaRecommender,
RP3betaRecommender,
SLIMElasticNetRecommender
]
metric_to_optimize = "HIT_RATE"
from Base.Evaluation.Evaluator import EvaluatorNegativeItemSample
evaluator_validation = EvaluatorNegativeItemSample(URM_validation, URM_test_negative, cutoff_list=[10])
evaluator_test = EvaluatorNegativeItemSample(URM_test, URM_test_negative, cutoff_list=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
runParameterSearch_Collaborative_partial = partial(runParameterSearch_Collaborative,
URM_train = URM_train,
metric_to_optimize = metric_to_optimize,
evaluator_validation_earlystopping = evaluator_validation,
evaluator_validation = evaluator_validation,
evaluator_test = evaluator_test,
output_folder_path = output_folder_path,
parallelizeKNN = False,
allow_weighting = True,
n_cases = 35)
# pool = multiprocessing.Pool(processes=int(multiprocessing.cpu_count()), maxtasksperchild=1)
# resultList = pool.map(runParameterSearch_Collaborative_partial, collaborative_algorithm_list)
#
# pool.close()
# pool.join()
for recommender_class in collaborative_algorithm_list:
try:
runParameterSearch_Collaborative_partial(recommender_class)
except Exception as e:
print("On recommender {} Exception {}".format(recommender_class, str(e)))
traceback.print_exc()
################################################################################################
###### NeuMF
try:
if dataset_name == "movielens1m":
num_factors = 64
elif dataset_name == "pinterest":
num_factors = 16
neuMF_article_parameters = {
"epochs": 100,
"epochs_gmf": 100,
"epochs_mlp": 100,
"batch_size": 256,
"num_factors": num_factors,
"layers": [num_factors*4, num_factors*2, num_factors],
"reg_mf": 0.0,
"reg_layers": [0,0,0],
"num_negatives": 4,
"learning_rate": 1e-3,
"learning_rate_pretrain": 1e-3,
"learner": "sgd",
"learner_pretrain": "adam",
"pretrain": True
}
neuMF_earlystopping_parameters = {
"validation_every_n": 5,
"stop_on_validation": True,
"evaluator_object": evaluator_validation,
"lower_validations_allowed": 5,
"validation_metric": metric_to_optimize
}
parameterSearch = SearchSingleCase(NeuMF_RecommenderWrapper,
evaluator_validation=evaluator_validation,
evaluator_test=evaluator_test)
recommender_parameters = SearchInputRecommenderParameters(
CONSTRUCTOR_POSITIONAL_ARGS = [URM_train],
FIT_KEYWORD_ARGS = neuMF_earlystopping_parameters)
parameterSearch.search(recommender_parameters,
fit_parameters_values=neuMF_article_parameters,
output_folder_path = output_folder_path,
output_file_name_root = NeuMF_RecommenderWrapper.RECOMMENDER_NAME)
except Exception as e:
print("On recommender {} Exception {}".format(NeuMF_RecommenderWrapper, str(e)))
traceback.print_exc()
n_validation_users = np.sum(np.ediff1d(URM_validation.indptr)>=1)
n_test_users = np.sum(np.ediff1d(URM_test.indptr)>=1)
print_time_statistics_latex_table(result_folder_path = output_folder_path,
dataset_name = dataset_name,
results_file_prefix_name = ALGORITHM_NAME,
other_algorithm_list = [NeuMF_RecommenderWrapper],
n_validation_users = n_validation_users,
n_test_users = n_test_users,
n_decimals = 2)
print_results_latex_table(result_folder_path = output_folder_path,
results_file_prefix_name = ALGORITHM_NAME,
dataset_name = dataset_name,
metrics_to_report_list = ["HIT_RATE", "NDCG"],
cutoffs_to_report_list = [1, 5, 10],
other_algorithm_list = [NeuMF_RecommenderWrapper])
if __name__ == '__main__':
ALGORITHM_NAME = "NeuMF"
CONFERENCE_NAME = "WWW"
dataset_list = ["movielens1m", "pinterest"]
for dataset in dataset_list:
read_data_split_and_search_NeuCF(dataset)
print_parameters_latex_table(result_folder_path = "result_experiments/{}/".format(CONFERENCE_NAME),
results_file_prefix_name = ALGORITHM_NAME,
experiment_subfolder_list = dataset_list,
other_algorithm_list = [NeuMF_RecommenderWrapper])