- GRASS GIS 7.X https://grasswiki.osgeo.org/wiki/GRASS-Wiki
- Python 2.7.X https://www.python.org/
-
Download at Earth Explorer Landsat 8 scene (LS8 - OLI/TIRS)
- For a scene without clouds, select the option Level 1 GeoTIFF Data Product
-
Reproject LS8 images for the coordinate system of interest
- e.g, WGS 84 24N to SIRGAS 2000 24S, using gdal recursively in command line:
mkdir rep && for i in *.TIF ; do gdalwarp -s_srs EPSG:32624 -t_srs EPSG:31984 -of GTiff $i rep/$i; done
-
Remove null values (black borders) of LS8 images
- e.g, using gdal recursively in command line:
mkdir nodata && for i in *.TIF; do gdal_translate -a_nodata 0 $i nodata/$i; done
-
Download at Earth Explorer the Digital Elevation Model (DEM) from ASTER (remember to choose the same region of LS8 scene)
-
It is necessary to reproject the DEM for the coordinate system of interest and rename to MDT_Sebal.TIF
- e.g, WGS 84 24N to SIRGAS 2000 24S, using gdal in command line:
gdalwarp -s_srs EPSG:32624 -t_srs EPSG:31984 -of GTiff ASTGTM2_S23W048.tif MDT_Sebal.TIF
-
Launch a GRASS-GIS 7.X session
- Select GRASS GIS database directory
- Define a new GRASS location
- Read the projection and datum terms from a georeferenced data file
- Select the raster MDT_Sebal.TIF
- Define a new GRASS mapset
-
Place Sebal70.py script in the directory where LS8 images are located
-
In Terminal Linux or Command Prompt Windows opened by GRASS, navigate to the directory where the Sebal70.py and LS8 images are located
- Run python in command line:
python Sebal70.py
- Follow the instrustructions indicated in Terminal
- Use query tool to visualize cold and hot pixels in GRASS GIS display
- Run python in command line:
- Tested on Ubuntu 14.04, 16.04, 18.04 LTS and Windows 8.
ALLEN, R. G.; TASUMI, M.; TREZZA, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, v. 133, n. 4, p. 380–394, 2007. Available at: http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9437(2007)133%3A4(380).
BASTIAANSSEN, W. G. M.; MENENTI, M.; FEDDES, R. A.; HOLTSLAG, A. A. M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology, v. 212–213, n. 1–4, p. 198–212, 1998. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0022169498002534.
SILVA, B. B.; BRAGA, A. C.; BRAGA, C. C.; OLIVEIRA, L. M. M. D.; MONTENEGRO, S. M. G. L.; BARBOSA JR., B. Procedures for calculation of the albedo with OLI-Landsat 8 images: Application to the Brazilian semi-arid. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 20, n. 1, p. 3–8, 2016. Available at: http://dx.doi.org/10.1590/1807-1929/agriambi.v20n1p3-8.
TASUMI, M.; ALLEN, R. G.; TREZZA, R.; WRIGHT, J. L. Satellite-Based Energy Balance to Assess Within-Population Variance of Crop Coefficient Curves. Journal of Irrigation and Drainage Engineering, v. 131, n. 1, p. 94–109, 2005. Available at: http://ascelibrary.org/doi/10.1061/(ASCE)0733-9437(2005)131:1(94).
To the grant 2016/15342-2, São Paulo Research Foundation (FAPESP) by the financial support.