forked from Kaixhin/imitation-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
123 lines (100 loc) · 7.55 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import torch
from torch import autograd
from torch.nn import functional as F
from torch.nn.utils import clip_grad_norm_
from torch.utils.data import DataLoader, Dataset
# Dataset that returns transition tuples of the form (s, a, r, s', terminal)
class TransitionDataset(Dataset):
def __init__(self, transitions):
super().__init__()
self.states, self.actions, self.rewards, self.terminals = transitions['states'], transitions['actions'].detach(), transitions['rewards'], transitions['terminals'] # Detach actions
# Allows string-based access for entire data of one type, or int-based access for single transition
def __getitem__(self, idx):
if isinstance(idx, str):
if idx == 'states':
return self.states
elif idx == 'actions':
return self.actions
elif idx == 'terminals':
return self.terminals
else:
return dict(states=self.states[idx], actions=self.actions[idx], rewards=self.rewards[idx], next_states=self.states[idx + 1], terminals=self.terminals[idx])
def __len__(self):
return self.terminals.size(0) - 1 # Need to return state and next state
# Computes and stores generalised advantage estimates ψ in the set of trajectories
def compute_advantages_(trajectories, next_value, discount, trace_decay):
reward_to_go, advantage = torch.zeros(1), torch.zeros(1)
trajectories['rewards_to_go'], trajectories['advantages'] = torch.empty_like(trajectories['rewards']), torch.empty_like(trajectories['rewards'])
for t in reversed(range(trajectories['states'].size(0))):
reward_to_go = trajectories['rewards'][t] + (1 - trajectories['terminals'][t]) * (discount * reward_to_go) # Reward-to-go/value R
trajectories['rewards_to_go'][t] = reward_to_go
td_error = trajectories['rewards'][t] + (1 - trajectories['terminals'][t]) * discount * next_value - trajectories['values'][t] # TD-error δ
advantage = td_error + (1 - trajectories['terminals'][t]) * discount * trace_decay * advantage # Generalised advantage estimate ψ
trajectories['advantages'][t] = advantage
next_value = trajectories['values'][t]
# Normalise the advantages
trajectories['advantages'] = (trajectories['advantages'] - trajectories['advantages'].mean()) / (trajectories['advantages'].std() + 1e-8)
# Performs one PPO update (includes GAE re-estimation)
def ppo_update(agent, trajectories, next_state, agent_optimiser, discount, trace_decay, ppo_clip, value_loss_coeff=1, entropy_loss_coeff=1, max_grad_norm=1):
policy, trajectories['values'] = agent(trajectories['states'])
trajectories['log_prob_actions'] = policy.log_prob(trajectories['actions'])
with torch.no_grad(): # Do not differentiate through advantage calculation
next_value = agent(next_state)[1]
compute_advantages_(trajectories, next_value, discount, trace_decay) # Recompute rewards-to-go R and generalised advantage estimates ψ based on the current value function V
policy_ratio = (trajectories['log_prob_actions'] - trajectories['old_log_prob_actions']).exp()
policy_loss = -torch.min(policy_ratio * trajectories['advantages'], torch.clamp(policy_ratio, min=1 - ppo_clip, max=1 + ppo_clip) * trajectories['advantages']).mean() # Update the policy by maximising the clipped PPO objective
value_loss = F.mse_loss(trajectories['values'], trajectories['rewards_to_go']) # Fit value function by regression on mean squared error
entropy_loss = -policy.entropy().mean() # Add entropy regularisation
agent_optimiser.zero_grad(set_to_none=True)
(policy_loss + value_loss_coeff * value_loss + entropy_loss_coeff * entropy_loss).backward()
clip_grad_norm_(agent.parameters(), max_grad_norm) # Clamp norm of gradients
agent_optimiser.step()
# Performs a behavioural cloning update
def behavioural_cloning_update(agent, expert_trajectories, agent_optimiser, batch_size):
expert_dataloader = DataLoader(expert_trajectories, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4)
for expert_transition in expert_dataloader:
expert_state, expert_action = expert_transition['states'], expert_transition['actions']
agent_optimiser.zero_grad(set_to_none=True)
behavioural_cloning_loss = -agent.log_prob(expert_state, expert_action).mean() # Maximum likelihood objective
behavioural_cloning_loss.backward()
agent_optimiser.step()
# Performs a target estimation update
def target_estimation_update(discriminator, expert_trajectories, discriminator_optimiser, batch_size):
expert_dataloader = DataLoader(expert_trajectories, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4)
for expert_transition in expert_dataloader:
expert_state, expert_action = expert_transition['states'], expert_transition['actions']
discriminator_optimiser.zero_grad(set_to_none=True)
prediction, target = discriminator(expert_state, expert_action)
regression_loss = F.mse_loss(prediction, target)
regression_loss.backward()
discriminator_optimiser.step()
# Performs an adversarial imitation learning update
def adversarial_imitation_update(algorithm, agent, discriminator, expert_trajectories, policy_trajectories, discriminator_optimiser, batch_size, r1_reg_coeff=1, pos_class_prior=1, nonnegative_margin=0):
expert_dataloader = DataLoader(expert_trajectories, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4)
policy_dataloader = DataLoader(policy_trajectories, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4)
# Iterate over mininum of expert and policy data
for expert_transition, policy_transition in zip(expert_dataloader, policy_dataloader):
expert_state, expert_action, expert_next_state, expert_terminal = expert_transition['states'], expert_transition['actions'], expert_transition['next_states'], expert_transition['terminals']
policy_state, policy_action, policy_next_state, policy_terminal = policy_transition['states'], policy_transition['actions'], policy_transition['next_states'], policy_transition['terminals']
if algorithm in ['FAIRL', 'GAIL', 'PUGAIL']:
D_expert = discriminator(expert_state, expert_action)
D_policy = discriminator(policy_state, policy_action)
elif algorithm == 'AIRL':
with torch.no_grad():
expert_data_log_policy = agent.log_prob(expert_state, expert_action)
policy_data_log_policy = agent.log_prob(policy_state, policy_action)
D_expert = discriminator(expert_state, expert_action, expert_next_state, expert_data_log_policy, expert_terminal)
D_policy = discriminator(policy_state, policy_action, policy_next_state, policy_data_log_policy, policy_terminal)
# Binary logistic regression
discriminator_optimiser.zero_grad(set_to_none=True)
expert_loss = (pos_class_prior if algorithm == 'PUGAIL' else 1) * F.binary_cross_entropy_with_logits(D_expert, torch.ones_like(D_expert)) # Loss on "real" (expert) data
autograd.backward(expert_loss, create_graph=True)
r1_reg = 0
for param in discriminator.parameters():
r1_reg += param.grad.norm() # R1 gradient penalty
if algorithm == 'PUGAIL':
policy_loss = torch.clamp(F.binary_cross_entropy_with_logits(D_expert, torch.zeros_like(D_expert)) - pos_class_prior * F.binary_cross_entropy_with_logits(D_policy, torch.zeros_like(D_policy)), min=-nonnegative_margin) # Loss on "real" and "unlabelled" (policy) data
else:
policy_loss = F.binary_cross_entropy_with_logits(D_policy, torch.zeros_like(D_policy)) # Loss on "fake" (policy) data
(policy_loss + r1_reg_coeff * r1_reg).backward()
discriminator_optimiser.step()