-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfda.py
150 lines (138 loc) · 5.98 KB
/
fda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from construct import *
import numpy as np
from oct_converter.image_types import OCTVolumeWithMetaData, FundusImageWithMetaData
from pylibjpeg import decode
from pathlib import Path
class FDA(object):
""" Class for extracting data from Topcon's .fda file format.
Notes:
Mostly based on description of .fda file format here:
https://bitbucket.org/uocte/uocte/wiki/Topcon%20File%20Format
Attributes:
filepath (str): Path to .img file for reading.
header (obj:Struct): Defines structure of volume's header.
oct_header (obj:Struct): Defines structure of OCT header.
fundus_header (obj:Struct): Defines structure of fundus header.
chunk_dict (dict): Name of data chunks present in the file, and their start locations.
"""
def __init__(self, filepath, debug=False):
self.debug = debug
self.filepath = Path(filepath)
if not self.filepath.exists():
raise FileNotFoundError(self.filepath)
self.header = Struct(
'FOCT' / PaddedString(4, 'ascii'),
'FDA' / PaddedString(3, 'ascii'),
'version_info_1' / Int32un,
'version_info_2' / Int32un
)
self.oct_header = Struct(
'type' / PaddedString(1, 'ascii'),
'unknown1' / Int32un,
'unknown2' / Int32un,
'width' / Int32un,
'height' / Int32un,
'number_slices' / Int32un,
'unknown3' / Int32un,
)
self.oct_header_2 = Struct(
'unknown' / PaddedString(1, 'ascii'),
'width' / Int32un,
'height' / Int32un,
'bits_per_pixel' / Int32un,
'number_slices' / Int32un,
'unknown' / PaddedString(1, 'ascii'),
'size' / Int32un,
)
self.fundus_header = Struct(
'width' / Int32un,
'height' / Int32un,
'bits_per_pixel' / Int32un,
'number_slices' / Int32un,
'unknown' / PaddedString(4, 'ascii'),
'size' / Int32un,
# 'img' / Int8un,
)
self.chunk_dict = self.get_list_of_file_chunks()
def get_list_of_file_chunks(self):
"""Find all data chunks present in the file.
Returns:
dict
"""
chunk_dict = {}
with open(self.filepath, 'rb') as f:
# skip header
raw = f.read(15)
header = self.header.parse(raw)
eof = False
while not eof:
chunk_name_size = np.fromstring(f.read(1), dtype=np.uint8)[0]
if chunk_name_size == 0:
eof = True
else:
chunk_name = f.read(chunk_name_size)
chunk_size = np.fromstring(f.read(4), dtype=np.uint32)[0]
chunk_location = f.tell()
f.seek(chunk_size, 1)
chunk_dict[chunk_name] = [chunk_location, chunk_size]
if self.debug:
print('File {} contains the following chunks:'.format(self.filepath))
for key in chunk_dict.keys():
print(key)
return chunk_dict
def read_oct_volume(self):
""" Reads OCT data.
Returns:
obj:OCTVolumeWithMetaData
"""
if b'@IMG_JPEG' not in self.chunk_dict:
raise ValueError('Could not find OCT header @IMG_JPEG in chunk list')
with open(self.filepath, 'rb') as f:
chunk_location, chunk_size = self.chunk_dict[b'@IMG_JPEG']
f.seek(chunk_location) # Set the chunk’s current position.
raw = f.read(25)
oct_header = self.oct_header.parse(raw)
volume = np.zeros((oct_header.height, oct_header.width, oct_header.number_slices))
for i in range(oct_header.number_slices):
size = np.fromstring(f.read(4), dtype=np.int32)[0]
raw_slice= f.read(size)
slice = decode(raw_slice)
volume[:,:,i] = slice
oct_volume = OCTVolumeWithMetaData([volume[:, :, i] for i in range(volume.shape[2])])
return oct_volume
def read_oct_volume_2(self):
""" Reads OCT data.
Returns:
obj:OCTVolumeWithMetaData
"""
if b'@IMG_MOT_COMP_03' not in self.chunk_dict:
raise ValueError('Could not find OCT header @IMG_MOT_COMP_03 in chunk list')
with open(self.filepath, 'rb') as f:
chunk_location, chunk_size = self.chunk_dict[b'@IMG_MOT_COMP_03']
f.seek(chunk_location) # Set the chunk’s current position.
raw = f.read(22)
oct_header = self.oct_header_2.parse(raw)
number_pixels = oct_header.width * oct_header.height * oct_header.number_slices
raw_volume = np.fromstring(f.read(number_pixels * 2), dtype=np.uint16)
volume = np.array(raw_volume)
volume = volume.reshape(oct_header.width, oct_header.height, oct_header.number_slices, order='F')
volume = np.transpose(volume, [1, 0, 2])
oct_volume = OCTVolumeWithMetaData([volume[:, :, i] for i in range(volume.shape[2])])
return oct_volume
def read_fundus_image(self):
""" Reads fundus image.
Returns:
obj:FundusImageWithMetaData
"""
if b'@IMG_FUNDUS' not in self.chunk_dict:
raise ValueError('Could not find fundus header @IMG_FUNDUS in chunk list')
with open(self.filepath, 'rb') as f:
chunk_location, chunk_size = self.chunk_dict[b'@IMG_FUNDUS']
f.seek(chunk_location)# Set the chunk’s current position.
raw = f.read(24)# skip 24 is important
fundus_header = self.fundus_header.parse(raw)
number_pixels = fundus_header.width * fundus_header.height * 3
raw_image = f.read(fundus_header.size)
image = decode(raw_image)
fundus_image = FundusImageWithMetaData(image)
return fundus_image