-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo2.py
171 lines (157 loc) · 6.72 KB
/
demo2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import random
from typing import List, Union, Any
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os
import sys
import glob2
import loguru
import pathlib
from tqdm import tqdm
from pandas import DataFrame
from pandas.io.parsers import TextFileReader
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets import make_blobs
from sklearn.preprocessing import StandardScaler
# read csv
def read_csvs(suffix='csv', file_root=''):
if not file_root:
file_root = suffix
result_dfs_list = []
root = pathlib.Path(file_root)
files_glob = root.rglob('*.' + suffix)
files_glob = [x for x in files_glob]
for file in tqdm(files_glob):
if suffix == 'csv':
df = pd.read_csv(file)
elif suffix == 'xlsx':
df = pd.read_excel(file)
else:
raise Exception()
result_dfs_list.append(df)
return result_dfs_list
# 聚类中加入航向和航速,限定一个范围,并用颜色标出不同聚类点
def draw_3d_scatters_5(df_list: List[Union[DataFrame]], random_rate=1.0):
# 将点云concat
df = pd.concat(df_list)
df = df.dropna()
# 归一化
df[['lat', 'lon', 'geoaltitude', 'velocity', 'heading']] = df[
['lat', 'lon', 'geoaltitude', 'velocity', 'heading']].apply(lambda x: (x - np.min(x)) / (np.max(x) - np.min(x)))
# 在控制台打印航向和航速的基本信息
print("航速:")
print(df['velocity'].describe())
print("航向:")
print(df['heading'].describe())
''' -----需要航向航速限定范围------- '''
velocity_range = (0, 100000)
heading_range = (0, 100000)
df = df[(df['velocity'] > velocity_range[0]) & (df['velocity'] < velocity_range[1])]
df = df[(df['heading'] > velocity_range[0]) & (df['heading'] < velocity_range[1])]
''' ---------------------------- '''
df = df.sample(frac=random_rate, random_state=888) # 按比例随机采样
X = df[['lat', 'lon', 'geoaltitude', 'velocity', 'heading']].to_numpy()
# 聚类时加入航向和航速特征并归一化
db = DBSCAN(eps=0.05, min_samples=10).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_
# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labels).count(-1)
print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels))
X = np.column_stack([X, labels])
X_nagetive = X[X[:, 5] == -1] # 无效样本
X = X[X[:, 5] != -1]
# 类的数量 -> 取出排名前N个类
ord_dic_list = [{'cluster_index': i, 'amt': len(X[X[:, 5] == i])} for i in range(n_clusters_)]
ord_dic_list = sorted(ord_dic_list, key=lambda x: x['amt'], reverse=True)
print(f"聚类数量:{len(ord_dic_list)}个类")
topk_cluster = [ord_dic_list[i]['cluster_index'] for i in range(len(ord_dic_list))] # fixme 超参数:这个5代表取数量排名前5的类
# 开始绘制散点图
# mandarin support
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
expand = 2
ax = plt.figure(figsize=[6.4 * expand, 4.8 * expand], dpi=100.0 / expand).add_subplot(projection='3d')
# 绘制没有被分类的点云为灰色
temp_nd = X_nagetive
xs = temp_nd[:, 0]
ys = temp_nd[:, 1]
zs = temp_nd[:, 2]
m = 'o'
ax.scatter(xs, ys, zs, marker=m, s=5, c='#7f7f7f', alpha=1.0)
# 绘制有分类的点云
for cluster_index in topk_cluster:
temp_nd = X[X[:, 5] == cluster_index]
xs = temp_nd[:, 0]
ys = temp_nd[:, 1]
zs = temp_nd[:, 2]
m = 'o'
ax.scatter(xs, ys, zs, marker=m, s=2)
ax.legend(['类别top'] + [f"第{str(i + 1)}类" for i, c in enumerate(topk_cluster)])
ax.set(xlabel='lat')
ax.set(ylabel='lon')
ax.set(zlabel='geoaltitude')
ax.set_title("航迹点云聚类(经纬高航向航速)")
plt.show()
# 不加航向航速
def draw_3d_scatters_3(df_list: List[Union[DataFrame]], random_rate=1.0):
# 将点云concat
df = pd.concat(df_list)
df = df.dropna()
# 归一化
df[['lat', 'lon', 'geoaltitude', 'velocity', 'heading']] = df[
['lat', 'lon', 'geoaltitude', 'velocity', 'heading']].apply(lambda x: (x - np.min(x)) / (np.max(x) - np.min(x)))
df = df.sample(frac=random_rate, random_state=888) # 按比例随机采样
X = df[['lat', 'lon', 'geoaltitude']].to_numpy()
# 聚类时加入航向和航速特征并归一化
db = DBSCAN(eps=0.01, min_samples=10).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_
# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labels).count(-1)
print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels))
X = np.column_stack([X, labels])
X_nagetive = X[X[:, 3] == -1] # 无效样本
X = X[X[:, 3] != -1]
# 类的数量 -> 取出排名前N个类
ord_dic_list = [{'cluster_index': i, 'amt': len(X[X[:, 3] == i])} for i in range(n_clusters_)]
ord_dic_list = sorted(ord_dic_list, key=lambda x: x['amt'], reverse=True)
print(f"聚类数量:{len(ord_dic_list)}个类")
topk_cluster = [ord_dic_list[i]['cluster_index'] for i in range(len(ord_dic_list))] # fixme 超参数:这个5代表取数量排名前5的类
# 开始绘制散点图
# mandarin support
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
expand = 2
ax = plt.figure(figsize=[6.4 * expand, 4.8 * expand], dpi=100.0 / expand).add_subplot(projection='3d')
# 绘制没有被分类的点云为灰色
temp_nd = X_nagetive
xs = temp_nd[:, 0]
ys = temp_nd[:, 1]
zs = temp_nd[:, 2]
m = 'o'
ax.scatter(xs, ys, zs, marker=m, s=5, c='#7f7f7f', alpha=1.0)
# 绘制有分类的点云
for cluster_index in topk_cluster:
temp_nd = X[X[:, 3] == cluster_index]
xs = temp_nd[:, 0]
ys = temp_nd[:, 1]
zs = temp_nd[:, 2]
m = 'o'
ax.scatter(xs, ys, zs, marker=m, s=5)
ax.legend(['类别top'] + [f"第{str(i + 1)}类" for i, c in enumerate(topk_cluster)])
ax.set(xlabel='lat')
ax.set(ylabel='lon')
ax.set(zlabel='geoaltitude')
ax.set_title("航迹点云聚类(经纬高)")
plt.show()
if __name__ == '__main__':
df_list = read_csvs('csv', 'D:\Repo\dbscan_absd\爬取数据\M-C5M运输_AE056D')
draw_3d_scatters_5(df_list, random_rate=0.012) # 加航向航速聚类
draw_3d_scatters_3(df_list, random_rate=0.012) # 不加航向航速聚类