-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgistproc.c
1532 lines (1364 loc) · 41 KB
/
gistproc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*-------------------------------------------------------------------------
*
* gistproc.c
* Support procedures for GiSTs over 2-D objects (boxes, polygons, circles,
* points).
*
* This gives R-tree behavior, with Guttman's poly-time split algorithm.
*
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/access/gist/gistproc.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <math.h>
#include "gist.h"
#include "access/stratnum.h"
#include "utils/builtins.h"
#include "utils/float.h"
#include "utils/geo_decls.h"
static bool gist_box_leaf_consistent(BOX *key, BOX *query,
StrategyNumber strategy);
static bool rtree_internal_consistent(BOX *key, BOX *query,
StrategyNumber strategy);
/* Minimum accepted ratio of split */
#define LIMIT_RATIO 0.3
/**************************************************
* Box ops
**************************************************/
/*
* Calculates union of two boxes, a and b. The result is stored in *n.
*/
static void
rt_box_union(BOX *n, const BOX *a, const BOX *b)
{
n->high.x = float8_max(a->high.x, b->high.x);
n->high.y = float8_max(a->high.y, b->high.y);
n->low.x = float8_min(a->low.x, b->low.x);
n->low.y = float8_min(a->low.y, b->low.y);
}
/*
* Size of a BOX for penalty-calculation purposes.
* The result can be +Infinity, but not NaN.
*/
static float8
size_box(const BOX *box)
{
/*
* Check for zero-width cases. Note that we define the size of a zero-
* by-infinity box as zero. It's important to special-case this somehow,
* as naively multiplying infinity by zero will produce NaN.
*
* The less-than cases should not happen, but if they do, say "zero".
*/
if (float8_le(box->high.x, box->low.x) ||
float8_le(box->high.y, box->low.y))
return 0.0;
/*
* We treat NaN as larger than +Infinity, so any distance involving a NaN
* and a non-NaN is infinite. Note the previous check eliminated the
* possibility that the low fields are NaNs.
*/
if (isnan(box->high.x) || isnan(box->high.y))
return get_float8_infinity();
return float8_mul(float8_mi(box->high.x, box->low.x),
float8_mi(box->high.y, box->low.y));
}
/*
* Return amount by which the union of the two boxes is larger than
* the original BOX's area. The result can be +Infinity, but not NaN.
*/
static float8
box_penalty(const BOX *original, const BOX *new)
{
BOX unionbox;
rt_box_union(&unionbox, original, new);
return float8_mi(size_box(&unionbox), size_box(original));
}
/*
* The GiST Consistent method for boxes
*
* Should return false if for all data items x below entry,
* the predicate x op query must be false, where op is the oper
* corresponding to strategy in the pg_amop table.
*/
Datum
gist_box_consistent(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
BOX *query = PG_GETARG_BOX_P(1);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
/* Oid subtype = PG_GETARG_OID(3); */
bool *recheck = (bool *) PG_GETARG_POINTER(4);
/* All cases served by this function are exact */
*recheck = false;
if (DatumGetBoxP(entry->key) == NULL || query == NULL)
PG_RETURN_BOOL(false);
/*
* if entry is not leaf, use rtree_internal_consistent, else use
* gist_box_leaf_consistent
*/
if (GIST_LEAF(entry))
PG_RETURN_BOOL(gist_box_leaf_consistent(DatumGetBoxP(entry->key),
query,
strategy));
else
PG_RETURN_BOOL(rtree_internal_consistent(DatumGetBoxP(entry->key),
query,
strategy));
}
/*
* Increase BOX b to include addon.
*/
static void
adjustBox(BOX *b, const BOX *addon)
{
if (float8_lt(b->high.x, addon->high.x))
b->high.x = addon->high.x;
if (float8_gt(b->low.x, addon->low.x))
b->low.x = addon->low.x;
if (float8_lt(b->high.y, addon->high.y))
b->high.y = addon->high.y;
if (float8_gt(b->low.y, addon->low.y))
b->low.y = addon->low.y;
}
/*
* The GiST Union method for boxes
*
* returns the minimal bounding box that encloses all the entries in entryvec
*/
Datum
gist_box_union(PG_FUNCTION_ARGS)
{
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
int *sizep = (int *) PG_GETARG_POINTER(1);
int numranges,
i;
BOX *cur,
*pageunion;
numranges = entryvec->n;
pageunion = (BOX *) palloc(sizeof(BOX));
cur = DatumGetBoxP(entryvec->vector[0].key);
memcpy((void *) pageunion, (void *) cur, sizeof(BOX));
for (i = 1; i < numranges; i++)
{
cur = DatumGetBoxP(entryvec->vector[i].key);
adjustBox(pageunion, cur);
}
*sizep = sizeof(BOX);
PG_RETURN_POINTER(pageunion);
}
/*
* We store boxes as boxes in GiST indexes, so we do not need
* compress, decompress, or fetch functions.
*/
/*
* The GiST Penalty method for boxes (also used for points)
*
* As in the R-tree paper, we use change in area as our penalty metric
*/
Datum
gist_box_penalty(PG_FUNCTION_ARGS)
{
GISTENTRY *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
GISTENTRY *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
float *result = (float *) PG_GETARG_POINTER(2);
BOX *origbox = DatumGetBoxP(origentry->key);
BOX *newbox = DatumGetBoxP(newentry->key);
*result = (float) box_penalty(origbox, newbox);
PG_RETURN_POINTER(result);
}
/*
* Trivial split: half of entries will be placed on one page
* and another half - to another
*/
static void
fallbackSplit(GistEntryVector *entryvec, GIST_SPLITVEC *v)
{
OffsetNumber i,
maxoff;
BOX *unionL = NULL,
*unionR = NULL;
int nbytes;
maxoff = entryvec->n - 1;
nbytes = (maxoff + 2) * sizeof(OffsetNumber);
v->spl_left = (OffsetNumber *) palloc(nbytes);
v->spl_right = (OffsetNumber *) palloc(nbytes);
v->spl_nleft = v->spl_nright = 0;
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
BOX *cur = DatumGetBoxP(entryvec->vector[i].key);
if (i <= (maxoff - FirstOffsetNumber + 1) / 2)
{
v->spl_left[v->spl_nleft] = i;
if (unionL == NULL)
{
unionL = (BOX *) palloc(sizeof(BOX));
*unionL = *cur;
}
else
adjustBox(unionL, cur);
v->spl_nleft++;
}
else
{
v->spl_right[v->spl_nright] = i;
if (unionR == NULL)
{
unionR = (BOX *) palloc(sizeof(BOX));
*unionR = *cur;
}
else
adjustBox(unionR, cur);
v->spl_nright++;
}
}
v->spl_ldatum = BoxPGetDatum(unionL);
v->spl_rdatum = BoxPGetDatum(unionR);
}
/*
* Represents information about an entry that can be placed to either group
* without affecting overlap over selected axis ("common entry").
*/
typedef struct
{
/* Index of entry in the initial array */
int index;
/* Delta between penalties of entry insertion into different groups */
float8 delta;
} CommonEntry;
/*
* Context for g_box_consider_split. Contains information about currently
* selected split and some general information.
*/
typedef struct
{
int entriesCount; /* total number of entries being split */
BOX boundingBox; /* minimum bounding box across all entries */
/* Information about currently selected split follows */
bool first; /* true if no split was selected yet */
float8 leftUpper; /* upper bound of left interval */
float8 rightLower; /* lower bound of right interval */
float4 ratio;
float4 overlap;
int dim; /* axis of this split */
float8 range; /* width of general MBR projection to the
* selected axis */
} ConsiderSplitContext;
/*
* Interval represents projection of box to axis.
*/
typedef struct
{
float8 lower,
upper;
} SplitInterval;
/*
* Interval comparison function by lower bound of the interval;
*/
static int
interval_cmp_lower(const void *i1, const void *i2)
{
float8 lower1 = ((const SplitInterval *) i1)->lower,
lower2 = ((const SplitInterval *) i2)->lower;
return float8_cmp_internal(lower1, lower2);
}
/*
* Interval comparison function by upper bound of the interval;
*/
static int
interval_cmp_upper(const void *i1, const void *i2)
{
float8 upper1 = ((const SplitInterval *) i1)->upper,
upper2 = ((const SplitInterval *) i2)->upper;
return float8_cmp_internal(upper1, upper2);
}
/*
* Replace negative (or NaN) value with zero.
*/
static inline float
non_negative(float val)
{
if (val >= 0.0f)
return val;
else
return 0.0f;
}
/*
* Consider replacement of currently selected split with the better one.
*/
static inline void
g_box_consider_split(ConsiderSplitContext *context, int dimNum,
float8 rightLower, int minLeftCount,
float8 leftUpper, int maxLeftCount)
{
int leftCount,
rightCount;
float4 ratio,
overlap;
float8 range;
/*
* Calculate entries distribution ratio assuming most uniform distribution
* of common entries.
*/
if (minLeftCount >= (context->entriesCount + 1) / 2)
{
leftCount = minLeftCount;
}
else
{
if (maxLeftCount <= context->entriesCount / 2)
leftCount = maxLeftCount;
else
leftCount = context->entriesCount / 2;
}
rightCount = context->entriesCount - leftCount;
/*
* Ratio of split - quotient between size of lesser group and total
* entries count.
*/
ratio = float4_div(Min(leftCount, rightCount), context->entriesCount);
if (ratio > LIMIT_RATIO)
{
bool selectthis = false;
/*
* The ratio is acceptable, so compare current split with previously
* selected one. Between splits of one dimension we search for minimal
* overlap (allowing negative values) and minimal ration (between same
* overlaps. We switch dimension if find less overlap (non-negative)
* or less range with same overlap.
*/
if (dimNum == 0)
range = float8_mi(context->boundingBox.high.x,
context->boundingBox.low.x);
else
range = float8_mi(context->boundingBox.high.y,
context->boundingBox.low.y);
overlap = float8_div(float8_mi(leftUpper, rightLower), range);
/* If there is no previous selection, select this */
if (context->first)
selectthis = true;
else if (context->dim == dimNum)
{
/*
* Within the same dimension, choose the new split if it has a
* smaller overlap, or same overlap but better ratio.
*/
if (overlap < context->overlap ||
(overlap == context->overlap && ratio > context->ratio))
selectthis = true;
}
else
{
/*
* Across dimensions, choose the new split if it has a smaller
* *non-negative* overlap, or same *non-negative* overlap but
* bigger range. This condition differs from the one described in
* the article. On the datasets where leaf MBRs don't overlap
* themselves, non-overlapping splits (i.e. splits which have zero
* *non-negative* overlap) are frequently possible. In this case
* splits tends to be along one dimension, because most distant
* non-overlapping splits (i.e. having lowest negative overlap)
* appears to be in the same dimension as in the previous split.
* Therefore MBRs appear to be very prolonged along another
* dimension, which leads to bad search performance. Using range
* as the second split criteria makes MBRs more quadratic. Using
* *non-negative* overlap instead of overlap as the first split
* criteria gives to range criteria a chance to matter, because
* non-overlapping splits are equivalent in this criteria.
*/
if (non_negative(overlap) < non_negative(context->overlap) ||
(range > context->range &&
non_negative(overlap) <= non_negative(context->overlap)))
selectthis = true;
}
if (selectthis)
{
/* save information about selected split */
context->first = false;
context->ratio = ratio;
context->range = range;
context->overlap = overlap;
context->rightLower = rightLower;
context->leftUpper = leftUpper;
context->dim = dimNum;
}
}
}
/*
* Compare common entries by their deltas.
*/
static int
common_entry_cmp(const void *i1, const void *i2)
{
float8 delta1 = ((const CommonEntry *) i1)->delta,
delta2 = ((const CommonEntry *) i2)->delta;
return float8_cmp_internal(delta1, delta2);
}
/*
* --------------------------------------------------------------------------
* Double sorting split algorithm. This is used for both boxes and points.
*
* The algorithm finds split of boxes by considering splits along each axis.
* Each entry is first projected as an interval on the X-axis, and different
* ways to split the intervals into two groups are considered, trying to
* minimize the overlap of the groups. Then the same is repeated for the
* Y-axis, and the overall best split is chosen. The quality of a split is
* determined by overlap along that axis and some other criteria (see
* g_box_consider_split).
*
* After that, all the entries are divided into three groups:
*
* 1) Entries which should be placed to the left group
* 2) Entries which should be placed to the right group
* 3) "Common entries" which can be placed to any of groups without affecting
* of overlap along selected axis.
*
* The common entries are distributed by minimizing penalty.
*
* For details see:
* "A new double sorting-based node splitting algorithm for R-tree", A. Korotkov
* http://syrcose.ispras.ru/2011/files/SYRCoSE2011_Proceedings.pdf#page=36
* --------------------------------------------------------------------------
*/
Datum
gist_box_picksplit(PG_FUNCTION_ARGS)
{
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
OffsetNumber i,
maxoff;
ConsiderSplitContext context;
BOX *box,
*leftBox,
*rightBox;
int dim,
commonEntriesCount;
SplitInterval *intervalsLower,
*intervalsUpper;
CommonEntry *commonEntries;
int nentries;
memset(&context, 0, sizeof(ConsiderSplitContext));
maxoff = entryvec->n - 1;
nentries = context.entriesCount = maxoff - FirstOffsetNumber + 1;
/* Allocate arrays for intervals along axes */
intervalsLower = (SplitInterval *) palloc(nentries * sizeof(SplitInterval));
intervalsUpper = (SplitInterval *) palloc(nentries * sizeof(SplitInterval));
/*
* Calculate the overall minimum bounding box over all the entries.
*/
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
box = DatumGetBoxP(entryvec->vector[i].key);
if (i == FirstOffsetNumber)
context.boundingBox = *box;
else
adjustBox(&context.boundingBox, box);
}
/*
* Iterate over axes for optimal split searching.
*/
context.first = true; /* nothing selected yet */
for (dim = 0; dim < 2; dim++)
{
float8 leftUpper,
rightLower;
int i1,
i2;
/* Project each entry as an interval on the selected axis. */
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
box = DatumGetBoxP(entryvec->vector[i].key);
if (dim == 0)
{
intervalsLower[i - FirstOffsetNumber].lower = box->low.x;
intervalsLower[i - FirstOffsetNumber].upper = box->high.x;
}
else
{
intervalsLower[i - FirstOffsetNumber].lower = box->low.y;
intervalsLower[i - FirstOffsetNumber].upper = box->high.y;
}
}
/*
* Make two arrays of intervals: one sorted by lower bound and another
* sorted by upper bound.
*/
memcpy(intervalsUpper, intervalsLower,
sizeof(SplitInterval) * nentries);
qsort(intervalsLower, nentries, sizeof(SplitInterval),
interval_cmp_lower);
qsort(intervalsUpper, nentries, sizeof(SplitInterval),
interval_cmp_upper);
/*----
* The goal is to form a left and right interval, so that every entry
* interval is contained by either left or right interval (or both).
*
* For example, with the intervals (0,1), (1,3), (2,3), (2,4):
*
* 0 1 2 3 4
* +-+
* +---+
* +-+
* +---+
*
* The left and right intervals are of the form (0,a) and (b,4).
* We first consider splits where b is the lower bound of an entry.
* We iterate through all entries, and for each b, calculate the
* smallest possible a. Then we consider splits where a is the
* upper bound of an entry, and for each a, calculate the greatest
* possible b.
*
* In the above example, the first loop would consider splits:
* b=0: (0,1)-(0,4)
* b=1: (0,1)-(1,4)
* b=2: (0,3)-(2,4)
*
* And the second loop:
* a=1: (0,1)-(1,4)
* a=3: (0,3)-(2,4)
* a=4: (0,4)-(2,4)
*/
/*
* Iterate over lower bound of right group, finding smallest possible
* upper bound of left group.
*/
i1 = 0;
i2 = 0;
rightLower = intervalsLower[i1].lower;
leftUpper = intervalsUpper[i2].lower;
while (true)
{
/*
* Find next lower bound of right group.
*/
while (i1 < nentries &&
float8_eq(rightLower, intervalsLower[i1].lower))
{
if (float8_lt(leftUpper, intervalsLower[i1].upper))
leftUpper = intervalsLower[i1].upper;
i1++;
}
if (i1 >= nentries)
break;
rightLower = intervalsLower[i1].lower;
/*
* Find count of intervals which anyway should be placed to the
* left group.
*/
while (i2 < nentries &&
float8_le(intervalsUpper[i2].upper, leftUpper))
i2++;
/*
* Consider found split.
*/
g_box_consider_split(&context, dim, rightLower, i1, leftUpper, i2);
}
/*
* Iterate over upper bound of left group finding greatest possible
* lower bound of right group.
*/
i1 = nentries - 1;
i2 = nentries - 1;
rightLower = intervalsLower[i1].upper;
leftUpper = intervalsUpper[i2].upper;
while (true)
{
/*
* Find next upper bound of left group.
*/
while (i2 >= 0 && float8_eq(leftUpper, intervalsUpper[i2].upper))
{
if (float8_gt(rightLower, intervalsUpper[i2].lower))
rightLower = intervalsUpper[i2].lower;
i2--;
}
if (i2 < 0)
break;
leftUpper = intervalsUpper[i2].upper;
/*
* Find count of intervals which anyway should be placed to the
* right group.
*/
while (i1 >= 0 && float8_ge(intervalsLower[i1].lower, rightLower))
i1--;
/*
* Consider found split.
*/
g_box_consider_split(&context, dim,
rightLower, i1 + 1, leftUpper, i2 + 1);
}
}
/*
* If we failed to find any acceptable splits, use trivial split.
*/
if (context.first)
{
fallbackSplit(entryvec, v);
PG_RETURN_POINTER(v);
}
/*
* Ok, we have now selected the split across one axis.
*
* While considering the splits, we already determined that there will be
* enough entries in both groups to reach the desired ratio, but we did
* not memorize which entries go to which group. So determine that now.
*/
/* Allocate vectors for results */
v->spl_left = (OffsetNumber *) palloc(nentries * sizeof(OffsetNumber));
v->spl_right = (OffsetNumber *) palloc(nentries * sizeof(OffsetNumber));
v->spl_nleft = 0;
v->spl_nright = 0;
/* Allocate bounding boxes of left and right groups */
leftBox = palloc0(sizeof(BOX));
rightBox = palloc0(sizeof(BOX));
/*
* Allocate an array for "common entries" - entries which can be placed to
* either group without affecting overlap along selected axis.
*/
commonEntriesCount = 0;
commonEntries = (CommonEntry *) palloc(nentries * sizeof(CommonEntry));
/* Helper macros to place an entry in the left or right group */
#define PLACE_LEFT(box, off) \
do { \
if (v->spl_nleft > 0) \
adjustBox(leftBox, box); \
else \
*leftBox = *(box); \
v->spl_left[v->spl_nleft++] = off; \
} while(0)
#define PLACE_RIGHT(box, off) \
do { \
if (v->spl_nright > 0) \
adjustBox(rightBox, box); \
else \
*rightBox = *(box); \
v->spl_right[v->spl_nright++] = off; \
} while(0)
/*
* Distribute entries which can be distributed unambiguously, and collect
* common entries.
*/
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
float8 lower,
upper;
/*
* Get upper and lower bounds along selected axis.
*/
box = DatumGetBoxP(entryvec->vector[i].key);
if (context.dim == 0)
{
lower = box->low.x;
upper = box->high.x;
}
else
{
lower = box->low.y;
upper = box->high.y;
}
if (float8_le(upper, context.leftUpper))
{
/* Fits to the left group */
if (float8_ge(lower, context.rightLower))
{
/* Fits also to the right group, so "common entry" */
commonEntries[commonEntriesCount++].index = i;
}
else
{
/* Doesn't fit to the right group, so join to the left group */
PLACE_LEFT(box, i);
}
}
else
{
/*
* Each entry should fit on either left or right group. Since this
* entry didn't fit on the left group, it better fit in the right
* group.
*/
Assert(float8_ge(lower, context.rightLower));
/* Doesn't fit to the left group, so join to the right group */
PLACE_RIGHT(box, i);
}
}
/*
* Distribute "common entries", if any.
*/
if (commonEntriesCount > 0)
{
/*
* Calculate minimum number of entries that must be placed in both
* groups, to reach LIMIT_RATIO.
*/
int m = ceil(LIMIT_RATIO * nentries);
/*
* Calculate delta between penalties of join "common entries" to
* different groups.
*/
for (i = 0; i < commonEntriesCount; i++)
{
box = DatumGetBoxP(entryvec->vector[commonEntries[i].index].key);
commonEntries[i].delta = Abs(float8_mi(box_penalty(leftBox, box),
box_penalty(rightBox, box)));
}
/*
* Sort "common entries" by calculated deltas in order to distribute
* the most ambiguous entries first.
*/
qsort(commonEntries, commonEntriesCount, sizeof(CommonEntry), common_entry_cmp);
/*
* Distribute "common entries" between groups.
*/
for (i = 0; i < commonEntriesCount; i++)
{
box = DatumGetBoxP(entryvec->vector[commonEntries[i].index].key);
/*
* Check if we have to place this entry in either group to achieve
* LIMIT_RATIO.
*/
if (v->spl_nleft + (commonEntriesCount - i) <= m)
PLACE_LEFT(box, commonEntries[i].index);
else if (v->spl_nright + (commonEntriesCount - i) <= m)
PLACE_RIGHT(box, commonEntries[i].index);
else
{
/* Otherwise select the group by minimal penalty */
if (box_penalty(leftBox, box) < box_penalty(rightBox, box))
PLACE_LEFT(box, commonEntries[i].index);
else
PLACE_RIGHT(box, commonEntries[i].index);
}
}
}
v->spl_ldatum = PointerGetDatum(leftBox);
v->spl_rdatum = PointerGetDatum(rightBox);
PG_RETURN_POINTER(v);
}
/*
* Equality method
*
* This is used for boxes, points, circles, and polygons, all of which store
* boxes as GiST index entries.
*
* Returns true only when boxes are exactly the same. We can't use fuzzy
* comparisons here without breaking index consistency; therefore, this isn't
* equivalent to box_same().
*/
Datum
gist_box_same(PG_FUNCTION_ARGS)
{
BOX *b1 = PG_GETARG_BOX_P(0);
BOX *b2 = PG_GETARG_BOX_P(1);
bool *result = (bool *) PG_GETARG_POINTER(2);
if (b1 && b2)
*result = (float8_eq(b1->low.x, b2->low.x) &&
float8_eq(b1->low.y, b2->low.y) &&
float8_eq(b1->high.x, b2->high.x) &&
float8_eq(b1->high.y, b2->high.y));
else
*result = (b1 == NULL && b2 == NULL);
PG_RETURN_POINTER(result);
}
/*
* Leaf-level consistency for boxes: just apply the query operator
*/
static bool
gist_box_leaf_consistent(BOX *key, BOX *query, StrategyNumber strategy)
{
bool retval;
switch (strategy)
{
case RTLeftStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_left,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTOverLeftStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_overleft,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTOverlapStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_overlap,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTOverRightStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_overright,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTRightStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_right,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTSameStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_same,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTContainsStrategyNumber:
case RTOldContainsStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_contain,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTContainedByStrategyNumber:
case RTOldContainedByStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_contained,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTOverBelowStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_overbelow,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTBelowStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_below,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTAboveStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_above,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTOverAboveStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_overabove,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
default:
elog(ERROR, "unrecognized strategy number: %d", strategy);
retval = false; /* keep compiler quiet */
break;
}
return retval;
}
/*****************************************
* Common rtree functions (for boxes, polygons, and circles)
*****************************************/
/*
* Internal-page consistency for all these types
*
* We can use the same function since all types use bounding boxes as the
* internal-page representation.
*/
static bool
rtree_internal_consistent(BOX *key, BOX *query, StrategyNumber strategy)
{
bool retval;
switch (strategy)
{
case RTLeftStrategyNumber:
retval = !DatumGetBool(DirectFunctionCall2(box_overright,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTOverLeftStrategyNumber:
retval = !DatumGetBool(DirectFunctionCall2(box_right,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTOverlapStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_overlap,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTOverRightStrategyNumber:
retval = !DatumGetBool(DirectFunctionCall2(box_left,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTRightStrategyNumber:
retval = !DatumGetBool(DirectFunctionCall2(box_overleft,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTSameStrategyNumber:
case RTContainsStrategyNumber:
case RTOldContainsStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_contain,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTContainedByStrategyNumber:
case RTOldContainedByStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_overlap,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTOverBelowStrategyNumber:
retval = !DatumGetBool(DirectFunctionCall2(box_above,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTBelowStrategyNumber:
retval = !DatumGetBool(DirectFunctionCall2(box_overabove,