-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathcartesian_inverse_dynamics_controller.cpp
executable file
·602 lines (488 loc) · 22.8 KB
/
cartesian_inverse_dynamics_controller.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
#include <pluginlib/class_list_macros.h>
#include <utils/euler_kinematical_zyz.h>
#include <angles/angles.h>
#include <kdl_conversions/kdl_msg.h>
#include <eigen_conversions/eigen_kdl.h>
#include <Eigen/LU>
#include <ros/package.h>
#include <yaml-cpp/yaml.h>
#include <lwr_force_position_controllers/cartesian_inverse_dynamics_controller.h>
#define DEFAULT_KP_IM_LINK4 0.001
#define DEFAULT_KP_IM_LINK5 3
#define DEFAULT_KD_IM_LINK4 10
#define DEFAULT_KD_IM_LINK5 10
// syntax:
//
// for jacobians x_J_y := Jacobian w.r.t reference point y expressed in basis x
// for analytical jacobians x_JA_y := analytical Jacobian w.r.t reference point y expressed in basis x
// for rotation matrices R_x_y := Rotation from basis y to basis x
// for wrenches x_wrench_y := Wrench w.r.t reference point y expressed in basis x
// for vectors in general x_vector := vector expressed in basis x
// p_x_y := arm from x to y
// ee := reference point of interest (typically the tool tip)
// wrist := tip of the 7th link of the Kuka LWR
// T := euler kinematical matrix
namespace lwr_controllers {
CartesianInverseDynamicsController::CartesianInverseDynamicsController() {}
CartesianInverseDynamicsController::~CartesianInverseDynamicsController() {}
bool CartesianInverseDynamicsController::init(hardware_interface::EffortJointInterface *robot, ros::NodeHandle &n)
{
KinematicChainControllerBase<hardware_interface::EffortJointInterface>::init(robot, n);
// get use_simulation parameter from rosparam server
ros::NodeHandle nh;
nh.getParam("/use_simulation", use_simulation_);
// extend kdl chain with end-effector
extend_chain(n);
// create two chain from vito_anchor to the link
// specified by the parameter internal_motion_controlled_link
std::string root_name, im_c_link_name;
nh_.getParam("root_name", root_name);
// nh_.getParam("internal_motion_controlled_link", im_c_link_name);
kdl_tree_.getChain(root_name, "lwr_4_link", im_link4_chain_);
kdl_tree_.getChain(root_name, "lwr_5_link", im_link5_chain_);
// instantiate solvers
// gravity_ is a member of KinematicChainControllerBase
dyn_param_solver_.reset(new KDL::ChainDynParam(kdl_chain_, gravity_));
ee_jacobian_solver_.reset(new KDL::ChainJntToJacSolver(extended_chain_));
wrist_jacobian_solver_.reset(new KDL::ChainJntToJacSolver(kdl_chain_));
ee_fk_solver_.reset(new KDL::ChainFkSolverPos_recursive(extended_chain_));
ee_jacobian_dot_solver_.reset(new KDL::ChainJntToJacDotSolver(extended_chain_));
im_link4_jacobian_solver_.reset(new KDL::ChainJntToJacSolver(im_link4_chain_));
im_link4_fk_solver_.reset(new KDL::ChainFkSolverPos_recursive(im_link4_chain_));
im_link5_jacobian_solver_.reset(new KDL::ChainJntToJacSolver(im_link5_chain_));
im_link5_fk_solver_.reset(new KDL::ChainFkSolverPos_recursive(im_link5_chain_));
// instantiate wrenches
wrench_wrist_ = KDL::Wrench();
base_wrench_wrist_ = KDL::Wrench();
// instantiate state and its derivatives
ws_x_ = Eigen::VectorXd(6);
ws_xdot_ = Eigen::VectorXd(6);
// instantiate analytical to geometric transformation matrices
ws_TA_ = Eigen::MatrixXd::Zero(6,6);
ws_TA_.block<3,3>(0,0) = Eigen::Matrix<double, 3, 3>::Identity();
ws_TA_dot_ = Eigen::MatrixXd::Zero(6,6);
// instantiate analytical to geometric transformation matrices
base_TA_im_link5_ = Eigen::MatrixXd::Zero(6,6);
base_TA_im_link5_.block<3,3>(0,0) = Eigen::Matrix<double, 3, 3>::Identity();
// set default controller gains
Kp_im_ = Eigen::Matrix<double, 6, 6>::Zero();
Kd_im_ = Eigen::Matrix<double, 6, 6>::Zero();
for(int i = 0; i < 3; i++)
Kd_im_(i,i) = DEFAULT_KD_IM_LINK4;
for(int i = 3; i < 6; i++)
Kd_im_(i,i) = DEFAULT_KD_IM_LINK5;
// set proportional action in the z direction only (for link4) (position)
Kp_im_(2,2) = DEFAULT_KP_IM_LINK4;
// set proportional action along z axis only (for link5) (attitude)
Kp_im_(5,5) = DEFAULT_KP_IM_LINK5;
// subscribe to force/torque sensor topic
sub_force_ = n.subscribe(ft_sensor_topic_name_, 1, \
&CartesianInverseDynamicsController::force_torque_callback, this);
return true;
}
void CartesianInverseDynamicsController::starting(const ros::Time& time)
{
// get current robot configuration (q) for the 5th link
KDL::JntArray q_im_link5;
q_im_link5.resize(im_link5_chain_.getNrOfJoints());
for(size_t i=0; i<im_link5_chain_.getNrOfJoints(); i++)
q_im_link5(i) = joint_handles_[i].getPosition();
// get current attitude for 5th link
double alpha_im_link5, beta_im_link5, gamma_im_link5;
KDL::Frame im_link5_fk_frame;
im_link5_fk_solver_->JntToCart(q_im_link5, im_link5_fk_frame);
im_link5_fk_frame.M.GetEulerZYZ(alpha_im_link5, beta_im_link5, gamma_im_link5);
gamma_im_link5_initial_ = gamma_im_link5;
}
void CartesianInverseDynamicsController::update_fri_inertia_matrix(Eigen::MatrixXd& fri_B)
{
int n_joints = kdl_chain_.getNrOfJoints();
for(int i = 0; i < n_joints; i++)
for(int j = 0; j < n_joints; j++)
fri_B(i,j) = inertia_matrix_handles_[i * n_joints + j].getPosition();
}
void CartesianInverseDynamicsController::update(const ros::Time& time, const ros::Duration& period)
{
//////////////////////////////////////////////////////////////////////////////////
//
// Robot configuration
//
//////////////////////////////////////////////////////////////////////////////////
//
// get current robot configuration (q and q dot)
for(size_t i=0; i<kdl_chain_.getNrOfJoints(); i++)
{
joint_msr_states_.q(i) = joint_handles_[i].getPosition();
joint_msr_states_.qdot(i) = joint_handles_[i].getVelocity();
}
// get inertia matrix from FRI
Eigen::MatrixXd fri_B (joint_handles_.size(), joint_handles_.size());
update_fri_inertia_matrix(fri_B);
// get the current configuration of the internal motion controlled links
KDL::JntArray q_im_link4;
KDL::JntArray q_im_link5;
q_im_link4.resize(im_link4_chain_.getNrOfJoints());
q_im_link5.resize(im_link5_chain_.getNrOfJoints());
for(size_t i=0; i<im_link4_chain_.getNrOfJoints(); i++)
q_im_link4(i) = joint_msr_states_.q(i);
for(size_t i=0; i<im_link5_chain_.getNrOfJoints(); i++)
q_im_link5(i) = joint_msr_states_.q(i);
//
//////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////
//
// Joint Space Inertia Matrix B and Coriolis term C * q dot
// (solvers does not take into account anything past the wrist
//
//////////////////////////////////////////////////////////////////////////////////
//
// evaluate the current B(q)
KDL::JntSpaceInertiaMatrix B;
B.resize(kdl_chain_.getNrOfJoints());
dyn_param_solver_->JntToMass(joint_msr_states_.q, B);
// evaluate the current C(q) * q dot
KDL::JntArray C;
C.resize(kdl_chain_.getNrOfJoints());
dyn_param_solver_->JntToCoriolis(joint_msr_states_.q, joint_msr_states_.qdot, C);
//
//////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////
//
// Geometric Jacobians
//
//////////////////////////////////////////////////////////////////////////////////
//
// evaluate the current geometric jacobian base_J_ee
KDL::Jacobian base_J_ee;
base_J_ee.resize(kdl_chain_.getNrOfJoints());
ee_jacobian_solver_->JntToJac(joint_msr_states_.q, base_J_ee);
// evaluate the current geometric jacobian base_J_wrist
KDL::Jacobian base_J_wrist;
base_J_wrist.resize(kdl_chain_.getNrOfJoints());
wrist_jacobian_solver_->JntToJac(joint_msr_states_.q, base_J_wrist);
// evaluate the current geometric jacobian related to
// the internal motion controlled links (linear velocity of the third and
// angular velocity of the fourth)
KDL::Jacobian base_J_im_link4;
KDL::Jacobian base_J_im_link5;
Eigen::MatrixXd base_J_im = Eigen::MatrixXd::Zero(6,7);
base_J_im_link4.resize(im_link4_chain_.getNrOfJoints());
base_J_im_link5.resize(im_link5_chain_.getNrOfJoints());
im_link4_jacobian_solver_->JntToJac(q_im_link4, base_J_im_link4);
im_link5_jacobian_solver_->JntToJac(q_im_link5, base_J_im_link5);
base_J_im.block(0, 0, 3, im_link4_chain_.getNrOfJoints()) = \
base_J_im_link4.data.block(0, 0, 3, im_link4_chain_.getNrOfJoints());
//
//////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////
//
// Forward Kinematics
//
//////////////////////////////////////////////////////////////////////////////////
//
// end effector
KDL::Frame ee_fk_frame;
ee_fk_solver_->JntToCart(joint_msr_states_.q, ee_fk_frame);
// internal motion controlled link
KDL::Frame im_link4_fk_frame;
KDL::Frame im_link5_fk_frame;
im_link4_fk_solver_->JntToCart(q_im_link4, im_link4_fk_frame);
im_link5_fk_solver_->JntToCart(q_im_link5, im_link5_fk_frame);
//
//////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////
//
// Analytical Jacobian written w.r.t. the workspace frame ws_JA_ee
// ws_JA_ee = ws_TA * ws_J_ee
//
//////////////////////////////////////////////////////////////////////////////////
//
// get the current ZYZ attitude representation PHI from R_ws_base * ee_fk_frame.M
double alpha, beta, gamma;
R_ws_ee_ = R_ws_base_ * ee_fk_frame.M;
R_ws_ee_.GetEulerZYZ(alpha, beta, gamma);
// evaluate the transformation matrix between
// the geometric and analytical jacobian TA
//
// ws_TA = [eye(3), zeros(3);
// zeros(3), inv(T(PHI))]
// where T is the Euler Kinematical Matrix
//
Eigen::Matrix3d ws_T;
eul_kin_ZYZ(beta, alpha, ws_T);
ws_TA_.block<3,3>(3,3) = ws_T.inverse();
// evaluate ws_J_ee
KDL::Jacobian ws_J_ee;
ws_J_ee.resize(kdl_chain_.getNrOfJoints());
KDL::changeBase(base_J_ee, R_ws_base_, ws_J_ee);
Eigen::MatrixXd ws_JA_ee;
ws_JA_ee = ws_TA_ * ws_J_ee.data;
//
//////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////
//
// Analytical Jacobian written w.r.t. the vito_anchor frame base_JA_im_link5
// base_JA_im_link5 = base_TA_im_link5 * base_J_im_link5
//
//////////////////////////////////////////////////////////////////////////////////
//
double alpha_im_link5, beta_im_link5, gamma_im_link5;
im_link5_fk_frame.M.GetEulerZYZ(alpha_im_link5, beta_im_link5, gamma_im_link5);
// evaluate the transformation matrix between
// the geometric and analytical jacobian TA
Eigen::Matrix3d base_T_im_link5;
eul_kin_ZYZ(beta_im_link5, alpha_im_link5, base_T_im_link5);
base_TA_im_link5_.block<3,3>(3,3) = base_T_im_link5.inverse();
Eigen::MatrixXd base_JA_im_link5;
base_JA_im_link5 = base_TA_im_link5_ * base_J_im_link5.data;
// add the angular part of base_JA_im_link5 to base_J_im
base_J_im.block(3, 0, 3, im_link5_chain_.getNrOfJoints()) = \
base_JA_im_link5.block(3, 0, 3, im_link5_chain_.getNrOfJoints());
//
//////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////
//
// Kinetic pseudo-energy BA (Siciliano p. 297)
// (i.e. Operational Space Inertia Matrix)
//
//////////////////////////////////////////////////////////////////////////////////
//
// BA = inv(ws_JA_ee * B_inv * base_J_wrist')
Eigen::MatrixXd BA;
if(use_simulation_)
// use kdl matrix for simulation
BA = ws_JA_ee * B.data.inverse() * base_J_wrist.data.transpose();
else
// use kdl matrix for real scenario
BA = ws_JA_ee * B.data.inverse() * base_J_wrist.data.transpose();
BA = BA.inverse();
//
//////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////
//
// Coriolis compensation in *Operational Space*
// BA * dot(ws_JA_ee) * qdot
//
//////////////////////////////////////////////////////////////////////////////////
//
// evaluation of dot(ws_JA_ee) = d/dt{ws_TA} * ws_J_ee + ws_TA * d/dt{ws_J_ee}
//
// where d/dt{ws_TA} = [d/dt{eye(3)}, d/dt{zeros(3)};
// d/dt{zeros(3)}, d/dt{inv(T(PHI))}]
// = [zeros(3), zeros(3);
// zeros(3), -inv(T) * d/dt{T} * int(T)]
//
// and d/dt{ws_J_ee} = [R_ws_base_, zeros(3);
// zeros(3), R_ws_base_] * d/dt{base_J_ee}
//
// evaluate the derivative of the state using the analytical jacobian
Eigen::Matrix3d ws_T_dot;
ws_xdot_ = ws_JA_ee * joint_msr_states_.qdot.data;
eul_kin_ZYZ_dot(beta, alpha, ws_xdot_(4), ws_xdot_(3), ws_T_dot);
ws_TA_dot_.block<3,3>(3,3) = - ws_T.inverse() * ws_T_dot * ws_T.inverse();
// evaluate the derivative of the jacobian base_J_ee
KDL::JntArrayVel jnt_q_qdot;
KDL::Jacobian ws_J_ee_dot;
ws_J_ee_dot.resize(kdl_chain_.getNrOfJoints());
jnt_q_qdot.q = joint_msr_states_.q;
jnt_q_qdot.qdot = joint_msr_states_.qdot;
ee_jacobian_dot_solver_->JntToJacDot(jnt_q_qdot, ws_J_ee_dot);
// and project it in the workspace frame
ws_J_ee_dot.changeBase(R_ws_base_);
Eigen::MatrixXd ws_JA_ee_dot;
ws_JA_ee_dot = ws_TA_dot_ * ws_J_ee.data + ws_TA_ * ws_J_ee_dot.data;
//
//////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////
//
// project ft_sensor wrench in world frame
//
//////////////////////////////////////////////////////////////////////////////////
//
Eigen::Matrix<double, 6,1> base_F_wrist;
base_wrench_wrist_ = ee_fk_frame.M * wrench_wrist_;
tf::wrenchKDLToEigen(base_wrench_wrist_, base_F_wrist);
//
//////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////
//
// evaluate dynamics inversion command TAU_FRI
//
// inheriting controllers augment TAU_FRI by calling
// set_command(desired_acceleration)
// so that TAU_FRI += command_filter * desired_accelration
//
//////////////////////////////////////////////////////////////////////////////////
//
if(use_simulation_)
tau_fri_ = C.data + base_J_wrist.data.transpose() * \
(base_F_wrist - BA * ws_JA_ee_dot * joint_msr_states_.qdot.data);
else
tau_fri_ = C.data + base_J_wrist.data.transpose() * \
(base_F_wrist - BA * ws_JA_ee_dot * joint_msr_states_.qdot.data);
command_filter_ = base_J_wrist.data.transpose() * BA;
//
//////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////
//
// internal motion handling
// (see A Unified Approach for Motion and Force Control
// of Robot Manipulators: The Operational Space Formulation, Oussama Khatib
// for details on the definition of a dynamically consistent generalized inverse)
//
//////////////////////////////////////////////////////////////////////////////////
//
// evaluate a dynamically consistent generalized inverse
Eigen::MatrixXd gen_inv;
if(use_simulation_)
gen_inv = B.data.inverse() * base_J_wrist.data.transpose() * \
(base_J_wrist.data * B.data.inverse() * base_J_wrist.data.transpose()).inverse();
else
gen_inv = B.data.inverse() * base_J_wrist.data.transpose() * \
(base_J_wrist.data * B.data.inverse() * base_J_wrist.data.transpose()).inverse();
// evaluate the null space filter
Eigen::MatrixXd ns_filter = Eigen::Matrix<double, 7, 7>::Identity() - \
base_J_wrist.data.transpose() * gen_inv.transpose();
// state and derivative of the state
Eigen::VectorXd im_state(6);
Eigen::VectorXd im_state_dot;
im_state << im_link4_fk_frame.p.x(), im_link4_fk_frame.p.y(), im_link4_fk_frame.p.z(),\
alpha_im_link5, beta_im_link5, gamma_im_link5;
im_state_dot = base_J_im * joint_msr_states_.qdot.data;
// control law
// tau = null_space_filter * J_im' * (Kp * (x_des - x) - Kd * x_dot)
Eigen::VectorXd im_des_state = Eigen::VectorXd(6);
// control strategy is to command an height offset between ee and link4
// and command the attitude (gamma only) of the link5
// in order to avoid joints limits
double z_offset = 0.8;
im_des_state << ee_fk_frame.p.x(), ee_fk_frame.p.y() + 0.6 , ee_fk_frame.p.z() + z_offset, \
-M_PI / 2, M_PI / 2, 0;
if(!(-M_PI / 2 < gamma_im_link5_initial_ && gamma_im_link5_initial_ < M_PI / 2))
im_des_state(5) = M_PI;
Eigen::VectorXd im_error = im_des_state - im_state;
// normalize angular error between - M_PI and M_PI
im_error(3) = angles::normalize_angle(im_error(3));
im_error(4) = angles::normalize_angle(im_error(4));
im_error(5) = angles::normalize_angle(im_error(5));
// filter and add the command to TAU_FRI
tau_fri_ += ns_filter * base_J_im.transpose() *\
(Kp_im_ * im_error - Kd_im_ * im_state_dot);
//
//////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////
//
// the following are possibly required by inheriting controllers
//
//////////////////////////////////////////////////////////////////////////////////
//
// evaluate position vector between the origin of the workspace frame and the end-effector
KDL::Vector p_ws_ee;
p_ws_ee = R_ws_base_ * (ee_fk_frame.p - p_base_ws_);
// evaluate the state
ws_x_ << p_ws_ee(0), p_ws_ee(1), p_ws_ee(2), alpha, beta, gamma;
// the derivative of the state
// was already evaluated in the previous sections
//
//////////////////////////////////////////////////////////////////////////////////
}
void CartesianInverseDynamicsController::set_command(Eigen::VectorXd& commanded_acceleration)
{
// augment tau_fri with the desired command specified by the inheriting controller
tau_fri_ += command_filter_ * commanded_acceleration;
// set joint efforts
for(int i=0; i<kdl_chain_.getNrOfJoints(); i++)
{
joint_handles_[i].setCommand(tau_fri_(i));
// required to exploit the JOINT IMPEDANCE MODE of the kuka manipulator
joint_stiffness_handles_[i].setCommand(0);
joint_damping_handles_[i].setCommand(0);
joint_set_point_handles_[i].setCommand(joint_msr_states_.q(i));
}
}
void CartesianInverseDynamicsController::load_calib_data(double& total_mass, KDL::Vector& p_sensor_tool_com)
{
std::string file_name = ros::package::getPath("lwr_force_position_controllers") +\
"/config/ft_calib_data.yaml";
YAML::Node ft_data_yaml = YAML::LoadFile(file_name);
std::vector<double> p_sensor_tool_com_vec(6);
// get data from the yaml file
double tool_mass = ft_data_yaml["gripper_mass"].as<double>();
p_sensor_tool_com_vec = ft_data_yaml["gripper_com_pose"].as<std::vector<double>>();
// transform to KDL
for (int i=0; i<3; i++)
p_sensor_tool_com.data[i] = p_sensor_tool_com_vec[i];
// compensate for additional items attached
double mass_sensor_support = 0.194;
double mass_sensor = 0.099;
total_mass = tool_mass + mass_sensor_support + mass_sensor;
p_sensor_tool_com.x(tool_mass * p_sensor_tool_com.x() / total_mass);
p_sensor_tool_com.y(tool_mass * p_sensor_tool_com.y() / total_mass);
p_sensor_tool_com.z((mass_sensor_support * 0.013 + mass_sensor * 0.0335 + \
tool_mass * (0.041 + p_sensor_tool_com.z())) / total_mass);
}
void CartesianInverseDynamicsController::extend_chain(ros::NodeHandle &n)
{
// extend the default chain with a fake segment in order to evaluate
// dynamics (B and C), Jacobians, derivatives of jacobians and
// forward kinematics with respect to a given reference point
// (typically the tool tip)
// the reference point is initialized by the inheriting class with a call to set_p_wrist_ee
KDL::Joint fake_joint = KDL::Joint();
KDL::Frame frame(KDL::Rotation::Identity(), p_wrist_ee_);
double total_mass;
double fake_cylinder_radius = 0.0475;
double fake_cylinder_height = 0.31;
KDL::Vector p_sensor_tool_com;
load_calib_data(total_mass, p_sensor_tool_com);
double fake_cyl_i_xx = 1.0 / 12.0 * total_mass * (3 * pow(fake_cylinder_radius, 2) + \
pow(fake_cylinder_height, 2));
double fake_cyl_i_zz = 1.0 / 2.0 * total_mass * pow(fake_cylinder_radius, 2);
KDL::RotationalInertia rot_inertia(fake_cyl_i_xx, fake_cyl_i_xx, fake_cyl_i_zz);
KDL::RigidBodyInertia inertia(total_mass, p_sensor_tool_com, rot_inertia);
KDL::Segment fake_segment(fake_joint, frame, inertia);
extended_chain_ = kdl_chain_;
extended_chain_.addSegment(fake_segment);
}
void CartesianInverseDynamicsController::force_torque_callback(const geometry_msgs::WrenchStamped::ConstPtr& msg)
{
KDL::Wrench wrench_wrist_topic;
tf::wrenchMsgToKDL(msg->wrench, wrench_wrist_topic);
// reverse the measured force so that wrench_wrist represents
// the force applied on the environment by the end-effector
wrench_wrist_ = - wrench_wrist_topic;
}
void CartesianInverseDynamicsController::get_gains_im(double& kp_z, double& kp_gamma, double& kd_pos, double& kd_att)
{
kp_z = Kp_im_(2, 2);
kp_gamma = Kp_im_(5, 5);
kd_pos = Kd_im_(0, 0);
kd_att = Kd_im_(3, 3);
}
void CartesianInverseDynamicsController::set_gains_im(double kp_z, double kp_gamma, double kd_pos, double kd_att)
{
Kp_im_(2,2) = kp_z;
Kp_im_(5,5) = kp_gamma;
for(int i = 0; i < 3; i++)
Kd_im_(i,i) = kd_pos;
for(int i = 3; i < 6; i++)
Kd_im_(i,i) = kd_att;
}
void CartesianInverseDynamicsController::set_ft_sensor_topic_name(std::string topic)
{
ft_sensor_topic_name_ = topic;
}
void CartesianInverseDynamicsController::set_p_wrist_ee(double x, double y, double z)
{
p_wrist_ee_ = KDL::Vector(x, y, z);
}
void CartesianInverseDynamicsController::set_p_base_ws(double x, double y, double z)
{
p_base_ws_ = KDL::Vector(x, y, z);
}
void CartesianInverseDynamicsController::set_ws_base_angles(double alpha, double beta, double gamma)
{
R_ws_base_ = KDL::Rotation::EulerZYZ(alpha, beta, gamma);
}
} // namespace
PLUGINLIB_EXPORT_CLASS(lwr_controllers::CartesianInverseDynamicsController , controller_interface::ControllerBase)