forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrcnn.cpp
570 lines (492 loc) · 23.3 KB
/
rcnn.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
#include <iostream>
#include <opencv2/opencv.hpp>
#include "backbone.hpp"
#include "RpnDecodePlugin.h"
#include "RpnNmsPlugin.h"
#include "RoiAlignPlugin.h"
#include "PredictorDecodePlugin.h"
#include "BatchedNmsPlugin.h"
#include "MaskRcnnInferencePlugin.h"
#include "calibrator.hpp"
#define DEVICE 0
#define BATCH_SIZE 1
#define BACKBONE_RESNETTYPE R50
// data
static const std::vector<float> PIXEL_MEAN = { 103.53, 116.28, 123.675 };
static const std::vector<float> PIXEL_STD = {1.0, 1.0, 1.0};
static constexpr float MIN_SIZE = 800.0;
static constexpr float MAX_SIZE = 1333.0;
static constexpr int NUM_CLASSES = 80;
static constexpr int INPUT_H = 480;
static constexpr int INPUT_W = 640;
static int IMAGE_HEIGHT = 800;
static int IMAGE_WIDTH = 1333;
// backbone
static const int RES2_OUT_CHANNELS = (BACKBONE_RESNETTYPE == R18 ||
BACKBONE_RESNETTYPE == R34) ? 64 : 256;
// rpn
static const std::vector<float> ANCHOR_SIZES = { 32, 64, 128, 256, 512 };
static const std::vector<float> ASPECT_RATIOS = { 0.5, 1.0, 2.0 };
static constexpr int PRE_NMS_TOP_K_TEST = 6000;
static constexpr float RPN_NMS_THRESH = 0.7;
static constexpr int POST_NMS_TOPK = 1000;
// roialign
static constexpr int STRIDES = 16;
static constexpr int SAMPLING_RATIO = 0;
static constexpr int POOLER_RESOLUTION = 14;
// roihead
static constexpr float NMS_THRESH_TEST = 0.5;
static constexpr int DETECTIONS_PER_IMAGE = 100;
static constexpr float SCORE_THRESH = 0.6;
static const std::vector<float> BBOX_REG_WEIGHTS = { 10.0, 10.0, 5.0, 5.0 };
static bool MASK_ON = false;
static const char* INPUT_NODE_NAME = "images";
static const std::vector<std::string> OUTPUT_NAMES = { "scores", "boxes",
"labels", "masks" };
std::vector<float> GenerateAnchors(const std::vector<float>& anchor_sizes,
const std::vector<float>& aspect_ratios) {
std::vector<float> res;
for (auto as : anchor_sizes) {
float area = as * as;
for (auto ar : aspect_ratios) {
float w = sqrt(area / ar);
float h = ar * w;
res.push_back(-w / 2.0);
res.push_back(-h / 2.0);
res.push_back(w / 2.0);
res.push_back(h / 2.0);
}
}
return res;
}
// transpose && resize && normalization && padding
ITensor* DataPreprocess(INetworkDefinition *network, ITensor& input) {
// get h and w
auto input_hw = input.getDimensions();
int c = input_hw.d[2];
int height = input_hw.d[0];
int width = input_hw.d[1];
// resize
float ratio = MIN_SIZE / static_cast<float>(std::min(height, width));
float newh = 0, neww = 0;
if (height < width) {
newh = MIN_SIZE;
neww = ratio * width;
} else {
newh = ratio * height;
neww = MIN_SIZE;
}
if (std::max(newh, neww) > MAX_SIZE) {
ratio = MAX_SIZE / static_cast<float>(std::max(newh, neww));
newh = newh * ratio;
neww = neww * ratio;
}
height = static_cast<int>(newh + 0.5);
width = static_cast<int>(neww + 0.5);
auto resize_layer = network->addResize(input);
assert(resize_layer);
resize_layer->setResizeMode(ResizeMode::kLINEAR);
resize_layer->setOutputDimensions(Dims3{ height, width, c });
IMAGE_HEIGHT = height;
IMAGE_WIDTH = width;
// HWC->CHW
auto channel_permute = network->addShuffle(*resize_layer->getOutput(0));
assert(channel_permute);
channel_permute->setFirstTranspose(Permutation{ 2, 0, 1 });
// sub pixel mean
auto pixel_mean = network->addConstant(Dims3{ 3, 1, 1 },
Weights{ DataType::kFLOAT, PIXEL_MEAN.data(), 3 });
assert(pixel_mean);
auto sub = network->addElementWise(*channel_permute->getOutput(0),
*pixel_mean->getOutput(0), ElementWiseOperation::kSUB);
assert(sub);
auto pixel_std = network->addConstant(Dims3{ 3, 1, 1 }, Weights{DataType::kFLOAT, PIXEL_STD.data(), 3});
assert(pixel_std);
auto div = network->addElementWise(*sub->getOutput(0), *pixel_std->getOutput(0), ElementWiseOperation::kDIV);
assert(div);
return div->getOutput(0);
}
void calculateRatio() {
float ratio = MIN_SIZE / static_cast<float>(std::min(INPUT_H, INPUT_W));
float newh = 0, neww = 0;
if (INPUT_H < INPUT_W) {
newh = MIN_SIZE;
neww = ratio * INPUT_W;
} else {
newh = ratio * INPUT_H;
neww = MIN_SIZE;
}
if (std::max(newh, neww) > MAX_SIZE) {
ratio = MAX_SIZE / static_cast<float>(std::max(newh, neww));
newh = newh * ratio;
neww = neww * ratio;
}
IMAGE_HEIGHT = static_cast<int>(newh + 0.5);
IMAGE_WIDTH = static_cast<int>(neww + 0.5);
}
ITensor* RPN(INetworkDefinition *network,
std::map<std::string, Weights>& weightMap, ITensor& features) {
int num_anchors = ANCHOR_SIZES.size() * ASPECT_RATIOS.size();
int box_dim = 4;
// rpn head conv
auto rpn_head_conv = network->addConvolutionNd(features, features.getDimensions().d[0], DimsHW{ 3, 3 },
weightMap["proposal_generator.rpn_head.conv.weight"],
weightMap["proposal_generator.rpn_head.conv.bias"]);
assert(rpn_head_conv);
rpn_head_conv->setStrideNd(DimsHW{ 1, 1 });
rpn_head_conv->setPaddingNd(DimsHW{ 1, 1 });
auto rpn_head_relu = network->addActivation(*rpn_head_conv->getOutput(0), ActivationType::kRELU);
assert(rpn_head_relu);
// objectness logits
auto rpn_head_logits = network->addConvolutionNd(*rpn_head_relu->getOutput(0), num_anchors, DimsHW{ 1, 1 },
weightMap["proposal_generator.rpn_head.objectness_logits.weight"],
weightMap["proposal_generator.rpn_head.objectness_logits.bias"]);
assert(rpn_head_logits);
rpn_head_logits->setStrideNd(DimsHW{ 1, 1 });
// anchor deltas
auto rpn_head_deltas = network->addConvolutionNd(*rpn_head_relu->getOutput(0), num_anchors * box_dim,
DimsHW{ 1, 1 },
weightMap["proposal_generator.rpn_head.anchor_deltas.weight"],
weightMap["proposal_generator.rpn_head.anchor_deltas.bias"]);
assert(rpn_head_deltas);
auto rpn_head_deltas_dim = rpn_head_deltas->getOutput(0)->getDimensions();
rpn_head_deltas->setStrideNd(DimsHW{ 1, 1 });
auto anchors = GenerateAnchors(ANCHOR_SIZES, ASPECT_RATIOS);
auto rpnDecodePlugin = RpnDecodePlugin(PRE_NMS_TOP_K_TEST, anchors, STRIDES, IMAGE_HEIGHT, IMAGE_WIDTH);
std::vector<ITensor*> faster_decode_inputs = { rpn_head_logits->getOutput(0), rpn_head_deltas->getOutput(0) };
auto rpnDecodeLayer = network->addPluginV2(faster_decode_inputs.data(), faster_decode_inputs.size(),
rpnDecodePlugin);
std::vector<ITensor*> nms_input = { rpnDecodeLayer->getOutput(0), rpnDecodeLayer->getOutput(1) };
// nms
auto nmsPlugin = RpnNmsPlugin(RPN_NMS_THRESH, POST_NMS_TOPK);
auto nmsLayer = network->addPluginV2(nms_input.data(), nms_input.size(), nmsPlugin);
return nmsLayer->getOutput(0);
}
ITensor* SharedRoiTransform(INetworkDefinition *network, std::map<std::string, Weights>& weightMap,
ITensor* proposals, ITensor* features, int num_proposals) {
std::vector<ITensor*> roi_inputs = { proposals, features };
auto roiAlignPlugin = RoiAlignPlugin(POOLER_RESOLUTION, 1 / static_cast<float>(STRIDES),
SAMPLING_RATIO, num_proposals, features->getDimensions().d[0]);
auto roiAlignLayer = network->addPluginV2(roi_inputs.data(), roi_inputs.size(), roiAlignPlugin);
// res5
/* same with https://github.com/facebookresearch/detectron2/
blob/9246ebc3af1c023cfbdae77e5d976edbcf9a2933/detectron2/modeling/roi_heads/roi_heads.py#L430,
use bottleneck here, so pass R50*/
auto box_features = MakeStage(network, weightMap, "roi_heads.res5",
*roiAlignLayer->getOutput(0), 3, R50,
roiAlignLayer->getOutput(0)->getDimensions().d[1],
512, RES2_OUT_CHANNELS * 8, 2);
return box_features;
}
void BoxHead(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor* proposals,
ITensor* features, std::vector<ITensor*>& instances) {
auto box_features = SharedRoiTransform(network, weightMap, proposals, features, POST_NMS_TOPK);
auto box_features_mean = network->addReduce(*box_features, ReduceOperation::kAVG, 12, true);
// score
auto scores = network->addFullyConnected(*box_features_mean->getOutput(0), NUM_CLASSES + 1,
weightMap["roi_heads.box_predictor.cls_score.weight"],
weightMap["roi_heads.box_predictor.cls_score.bias"]);
auto probs = network->addSoftMax(*scores->getOutput(0));
auto probs_dim = probs->getOutput(0)->getDimensions();
auto score_slice = network->addSlice(*probs->getOutput(0), Dims4{ 0, 0, 0, 0 },
Dims4{ probs_dim.d[0], probs_dim.d[1] - 1, 1, 1 }, Dims4{ 1, 1, 1, 1 });
auto proposal_deltas = network->addFullyConnected(*box_features_mean->getOutput(0), NUM_CLASSES * 4,
weightMap["roi_heads.box_predictor.bbox_pred.weight"],
weightMap["roi_heads.box_predictor.bbox_pred.bias"]);
// decode
std::vector<ITensor*> predictorDecodeInput = { score_slice->getOutput(0),
proposal_deltas->getOutput(0), proposals };
auto predictorDecodePlugin = PredictorDecodePlugin(probs_dim.d[0], IMAGE_HEIGHT, IMAGE_WIDTH, BBOX_REG_WEIGHTS);
auto predictorDecodeLayer = network->addPluginV2(predictorDecodeInput.data(),
predictorDecodeInput.size(), predictorDecodePlugin);
// nms
std::vector<ITensor*> nmsInput = { predictorDecodeLayer->getOutput(0),
predictorDecodeLayer->getOutput(1), predictorDecodeLayer->getOutput(2) };
auto batchedNmsPlugin = BatchedNmsPlugin(NMS_THRESH_TEST, DETECTIONS_PER_IMAGE);
auto batchedNmsLayer = network->addPluginV2(nmsInput.data(), nmsInput.size(), batchedNmsPlugin);
// instances
instances.push_back(batchedNmsLayer->getOutput(0));
instances.push_back(batchedNmsLayer->getOutput(1));
instances.push_back(batchedNmsLayer->getOutput(2));
}
void MaskHead(INetworkDefinition *network, std::map<std::string, Weights>& weightMap,
ITensor* features, std::vector<ITensor*>& instances, int out_channels = 256) {
auto mask_features = SharedRoiTransform(network, weightMap, instances[1], features, DETECTIONS_PER_IMAGE);
// mask_fcn
auto mask_deconv = network->addDeconvolutionNd(*mask_features, out_channels, DimsHW{ 2, 2 },
weightMap["roi_heads.mask_head.deconv.weight"],
weightMap["roi_heads.mask_head.deconv.bias"]);
mask_deconv->setStrideNd(DimsHW{ 2, 2 });
auto deconv_relu = network->addActivation(*mask_deconv->getOutput(0), ActivationType::kRELU);
assert(deconv_relu);
auto predictor = network->addConvolutionNd(*deconv_relu->getOutput(0), NUM_CLASSES, DimsHW{ 1, 1 },
weightMap["roi_heads.mask_head.predictor.weight"],
weightMap["roi_heads.mask_head.predictor.bias"]);
predictor->setStrideNd(DimsHW{ 1, 1 });
ITensor* masks;
if (NUM_CLASSES == 1) {
auto mask_probs_pred = network->addActivation(*predictor->getOutput(0), ActivationType::kSIGMOID);
masks = mask_probs_pred->getOutput(0);
} else {
std::vector<ITensor*> mask_rcnn_inference_inputs = { instances[2], predictor->getOutput(0) };
auto maskRcnnInferencePlugin = MaskRcnnInferencePlugin(DETECTIONS_PER_IMAGE, POOLER_RESOLUTION);
auto maskRcnnInferenceLayer = network->addPluginV2(mask_rcnn_inference_inputs.data(),
mask_rcnn_inference_inputs.size(), maskRcnnInferencePlugin);
masks = maskRcnnInferenceLayer->getOutput(0);
}
instances.push_back(masks);
}
std::vector<ITensor*> ROIHeads(INetworkDefinition *network, std::map<std::string, Weights>& weightMap,
ITensor* proposals, ITensor* features) {
std::vector<ITensor*> instances;
// box head
BoxHead(network, weightMap, proposals, features, instances);
if (MASK_ON) {
// mask head
MaskHead(network, weightMap, features, instances);
}
return instances;
}
ICudaEngine* createEngine_rcnn(unsigned int maxBatchSize,
const std::string& wtsfile, IBuilder* builder, IBuilderConfig* config, DataType dt,
const std::string& quantizationType) {
/*
description: after fuse bn
*/
INetworkDefinition* network = builder->createNetworkV2(0U);
// Create input tensor of shape {INPUT_H, INPUT_W, 3} with name INPUT_BLOB_NAME
ITensor* data = network->addInput(INPUT_NODE_NAME, dt, Dims3{ INPUT_H, INPUT_W, 3 });
assert(data);
// preprocess
data = DataPreprocess(network, *data);
std::map<std::string, Weights> weightMap;
loadWeights(wtsfile, weightMap);
// backbone
ITensor* features = BuildResNet(network, weightMap, *data, BACKBONE_RESNETTYPE, 64, 64, RES2_OUT_CHANNELS);
auto proposals = RPN(network, weightMap, *features);
auto results = ROIHeads(network, weightMap, proposals, features);
// build output
for (int i = 0; i < results.size(); i++) {
network->markOutput(*results[i]);
results[i]->setName(OUTPUT_NAMES[i].c_str());
}
// build engine
builder->setMaxBatchSize(maxBatchSize);
config->setMaxWorkspaceSize(1ULL << 30);
if (quantizationType == "fp32") {
} else if (quantizationType == "fp16") {
config->setFlag(BuilderFlag::kFP16);
} else if (quantizationType == "int8") {
std::cout << "Your platform support int8: " << (builder->platformHasFastInt8() ? "true" : "false") << std::endl;
assert(builder->platformHasFastInt8());
config->setFlag(BuilderFlag::kINT8);
Int8EntropyCalibrator2* calibrator = new Int8EntropyCalibrator2(1, INPUT_W, INPUT_H, "./coco_calib/",
"int8calib.table", INPUT_NODE_NAME);
config->setInt8Calibrator(calibrator);
} else {
throw("does not support model type");
}
std::cout << "Building engine, please wait for a while..." << std::endl;
ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
std::cout << "Build engine successfully!" << std::endl;
// destroy network
network->destroy();
// Release host memory
for (auto& mem : weightMap) {
delete[] mem.second.values;
}
return engine;
}
void BuildRcnnModel(unsigned int maxBatchSize, IHostMemory** modelStream, const std::string& wtsfile,
const std::string& quantizationType = "fp32") {
// Create builder
IBuilder* builder = createInferBuilder(gLogger);
IBuilderConfig* config = builder->createBuilderConfig();
ICudaEngine* engine = createEngine_rcnn(maxBatchSize,
wtsfile, builder, config, DataType::kFLOAT, quantizationType);
assert(engine != nullptr);
// Serialize the engine
(*modelStream) = engine->serialize();
// Close everything down
engine->destroy();
builder->destroy();
}
void doInference(IExecutionContext& context, cudaStream_t& stream, std::vector<void*>& buffers,
std::vector<float>& input, std::vector<float*>& output) {
CUDA_CHECK(cudaMemcpyAsync(buffers[0], input.data(), BATCH_SIZE * INPUT_H * INPUT_W * 3 * sizeof(float),
cudaMemcpyHostToDevice, stream));
context.enqueue(BATCH_SIZE, buffers.data(), stream, nullptr);
CUDA_CHECK(cudaMemcpyAsync(output[0], buffers[1], BATCH_SIZE * DETECTIONS_PER_IMAGE * sizeof(float),
cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaMemcpyAsync(output[1], buffers[2], BATCH_SIZE * DETECTIONS_PER_IMAGE * 4 * sizeof(float),
cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaMemcpyAsync(output[2], buffers[3], BATCH_SIZE * DETECTIONS_PER_IMAGE * sizeof(float),
cudaMemcpyDeviceToHost, stream));
if (MASK_ON)
CUDA_CHECK(cudaMemcpyAsync(output[3], buffers[4],
BATCH_SIZE * DETECTIONS_PER_IMAGE * POOLER_RESOLUTION * POOLER_RESOLUTION * sizeof(float),
cudaMemcpyDeviceToHost, stream));
cudaStreamSynchronize(stream);
}
bool parse_args(int argc, char** argv, std::string& wtsFile, std::string& engineFile, std::string& imgDir) {
if (argc < 4) return false;
if (std::string(argv[1]) == "-s") {
wtsFile = std::string(argv[2]);
engineFile = std::string(argv[3]);
} else if (std::string(argv[1]) == "-d") {
engineFile = std::string(argv[2]);
imgDir = std::string(argv[3]);
} else {
return false;
}
if (argc >= 5 && std::string(argv[4]) == "m") MASK_ON = true;
return true;
}
int main(int argc, char** argv) {
cudaSetDevice(DEVICE);
std::string wtsFile = "";
std::string engineFile = "";
std::string imgDir;
if (!parse_args(argc, argv, wtsFile, engineFile, imgDir)) {
std::cerr << "arguments not right!" << std::endl;
std::cerr << "./rcnn -s [.wts] [.engine] [m] // serialize model to plan file" << std::endl;
std::cerr << "./rcnn -d [.engine] ../samples [m] // deserialize plan file and run inference" << std::endl;
return -1;
}
if (!wtsFile.empty()) {
IHostMemory* modelStream{ nullptr };
BuildRcnnModel(BATCH_SIZE, &modelStream, wtsFile, "fp32");
assert(modelStream != nullptr);
std::ofstream p(engineFile, std::ios::binary);
if (!p) {
std::cerr << "could not open plan output file" << std::endl;
return -1;
}
p.write(reinterpret_cast<const char*>(modelStream->data()), modelStream->size());
modelStream->destroy();
return 0;
}
// calculate ratio
calculateRatio();
// deserialize the .engine and run inference
std::ifstream file(engineFile, std::ios::binary);
if (!file.good()) {
std::cerr << "read " << engineFile << " error!" << std::endl;
return -1;
}
std::string trtModelStream;
size_t modelSize{ 0 };
file.seekg(0, file.end);
modelSize = file.tellg();
file.seekg(0, file.beg);
trtModelStream.resize(modelSize);
assert(!trtModelStream.empty());
file.read(const_cast<char*>(trtModelStream.c_str()), modelSize);
file.close();
// build engine
std::cout << "build engine" << std::endl;
IRuntime* runtime = createInferRuntime(gLogger);
assert(runtime != nullptr);
ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream.c_str(), modelSize);
assert(engine != nullptr);
IExecutionContext* context = engine->createExecutionContext();
assert(context != nullptr);
runtime->destroy();
cudaStream_t stream;
CUDA_CHECK(cudaStreamCreate(&stream));
// prepare input file
std::vector<std::string> fileList;
if (read_files_in_dir(imgDir.c_str(), fileList) < 0) {
std::cerr << "read_files_in_dir failed." << std::endl;
return -1;
}
// prepare input data
std::vector<float> data(BATCH_SIZE * INPUT_H * INPUT_W * 3, 0);
void *data_d, *scores_d, *boxes_d, *classes_d, *masks_d;
CUDA_CHECK(cudaMalloc(&data_d, BATCH_SIZE * INPUT_H * INPUT_W * 3 * sizeof(float)));
CUDA_CHECK(cudaMalloc(&scores_d, BATCH_SIZE * DETECTIONS_PER_IMAGE * sizeof(float)));
CUDA_CHECK(cudaMalloc(&boxes_d, BATCH_SIZE * DETECTIONS_PER_IMAGE * 4 * sizeof(float)));
CUDA_CHECK(cudaMalloc(&classes_d, BATCH_SIZE * DETECTIONS_PER_IMAGE * sizeof(float)));
std::vector<float> scores_h(BATCH_SIZE * DETECTIONS_PER_IMAGE);
std::vector<float> boxes_h(BATCH_SIZE * DETECTIONS_PER_IMAGE * 4);
std::vector<float> classes_h(BATCH_SIZE * DETECTIONS_PER_IMAGE);
std::vector<float> masks_h;
std::vector<void*> buffers = { data_d, scores_d, boxes_d, classes_d };
std::vector<float*> outputs = {scores_h.data(), boxes_h.data(), classes_h.data()};
if (MASK_ON) {
CUDA_CHECK(cudaMalloc(&masks_d,
BATCH_SIZE * DETECTIONS_PER_IMAGE * POOLER_RESOLUTION * POOLER_RESOLUTION * sizeof(float)));
masks_h.resize(BATCH_SIZE * DETECTIONS_PER_IMAGE * POOLER_RESOLUTION * POOLER_RESOLUTION);
buffers.push_back(masks_d);
outputs.push_back(masks_h.data());
}
int fcount = 0;
int fileLen = fileList.size();
for (int f = 0; f < fileLen; f++) {
fcount++;
if (fcount < BATCH_SIZE && f + 1 != fileLen) continue;
for (int b = 0; b < fcount; b++) {
cv::Mat img = cv::imread(imgDir + "/" + fileList[f - fcount + 1 + b]);
img = preprocessImg(img, INPUT_W, INPUT_H);
if (img.empty()) continue;
for (int i = 0; i < INPUT_H * INPUT_W * 3; i++)
data[b*INPUT_H * INPUT_W * 3 + i] = static_cast<float>(*(img.data + i));
}
// Run inference
auto start = std::chrono::system_clock::now();
doInference(*context, stream, buffers, data, outputs);
auto end = std::chrono::system_clock::now();
std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl;
float h_ratio = static_cast<float>(INPUT_H) / IMAGE_HEIGHT;
float w_ratio = static_cast<float>(INPUT_W) / IMAGE_WIDTH;
for (int b = 0; b < fcount; b++) {
cv::Mat img = cv::imread(imgDir + "/" + fileList[f - fcount + 1 + b]);
img = preprocessImg(img, INPUT_W, INPUT_H);
for (int i = 0; i < DETECTIONS_PER_IMAGE; i++) {
if (scores_h[b * DETECTIONS_PER_IMAGE + i] > SCORE_THRESH) {
float x1 = boxes_h[b * DETECTIONS_PER_IMAGE * 4 + i * 4 + 0] * w_ratio;
float y1 = boxes_h[b * DETECTIONS_PER_IMAGE * 4 + i * 4 + 1] * h_ratio;
float x2 = boxes_h[b * DETECTIONS_PER_IMAGE * 4 + i * 4 + 2] * w_ratio;
float y2 = boxes_h[b * DETECTIONS_PER_IMAGE * 4 + i * 4 + 3] * h_ratio;
int label = classes_h[b * DETECTIONS_PER_IMAGE + i];
float score = scores_h[b * DETECTIONS_PER_IMAGE + i];
printf("boxes:[%.6f, %.6f, %.6f, %.6f] scores: %.4f label: %d \n", x1, y1, x2, y2, score, label);
cv::Rect r(x1, y1, x2 - x1, y2 - y1);
cv::rectangle(img, r, cv::Scalar(0x27, 0xC1, 0x36), 2);
cv::putText(img, std::to_string(label), cv::Point(r.x, r.y - 1), cv::FONT_HERSHEY_PLAIN, 1.2,
cv::Scalar(0xFF, 0xFF, 0xFF), 2);
if (MASK_ON) {
cv::Mat maskPart = cv::Mat::zeros(cv::Size(POOLER_RESOLUTION, POOLER_RESOLUTION), CV_32FC1);
memcpy(maskPart.data,
&masks_h[b * DETECTIONS_PER_IMAGE * POOLER_RESOLUTION * POOLER_RESOLUTION +
i * POOLER_RESOLUTION * POOLER_RESOLUTION],
POOLER_RESOLUTION * POOLER_RESOLUTION * sizeof(float));
cv::Rect r(cv::Point(floor(x1) - 1 < 0 ? 0 : floor(x1) - 1,
floor(y1) - 1 < 0 ? 0 : floor(y1) - 1),
cv::Point(ceil(x2) + 1 > INPUT_W ? INPUT_W : ceil(x2) + 1,
ceil(y2) + 1 > INPUT_H ? INPUT_H : ceil(y2) + 1));
cv::resize(maskPart, maskPart, cv::Size(r.width, r.height));
cv::Mat curMask = cv::Mat::zeros(cv::Size(INPUT_W, INPUT_H), CV_8UC1);
cv::threshold(maskPart, maskPart, 0.5, 255, cv::THRESH_BINARY);
curMask(r) += maskPart;
std::vector<std::vector<cv::Point>> contours;
cv::findContours(curMask, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE);
for (int c = 0; c < contours.size(); c++)
cv::drawContours(img, contours, c, cv::Scalar(0, 0, 255));
}
}
}
cv::imwrite("_" + fileList[f - fcount + 1 + b], img);
}
fcount = 0;
}
cudaStreamDestroy(stream);
CUDA_CHECK(cudaFree(data_d));
CUDA_CHECK(cudaFree(scores_d));
CUDA_CHECK(cudaFree(boxes_d));
CUDA_CHECK(cudaFree(classes_d));
if (MASK_ON) CUDA_CHECK(cudaFree(masks_d));
context->destroy();
engine->destroy();
return 0;
}