-
Notifications
You must be signed in to change notification settings - Fork 70
/
toy.py
555 lines (444 loc) · 16.1 KB
/
toy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
"""
Toy language dialect from MLIR tutorial.
"""
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import TypeAlias, cast
from xdsl.dialects.builtin import (
DenseIntOrFPElementsAttr,
Float64Type,
FunctionType,
StringAttr,
SymbolRefAttr,
TensorType,
UnrankedTensorType,
f64,
)
from xdsl.ir import (
Attribute,
Block,
Dialect,
Operation,
OpResult,
OpTraits,
Region,
SSAValue,
)
from xdsl.irdl import (
IRDLOperation,
attr_def,
base,
irdl_op_definition,
operand_def,
opt_attr_def,
opt_operand_def,
region_def,
result_def,
traits_def,
var_operand_def,
var_result_def,
)
from xdsl.pattern_rewriter import RewritePattern
from xdsl.traits import (
CallableOpInterface,
HasCanonicalizationPatternsTrait,
IsTerminator,
OpTrait,
Pure,
SymbolOpInterface,
)
from xdsl.utils.exceptions import VerifyException
from xdsl.utils.hints import isa
from xdsl.utils.isattr import isattr
TensorTypeF64: TypeAlias = TensorType[Float64Type]
UnrankedTensorTypeF64: TypeAlias = UnrankedTensorType[Float64Type]
AnyTensorTypeF64: TypeAlias = TensorTypeF64 | UnrankedTensorTypeF64
AnyTensorTypeF64Constr = base(TensorTypeF64) | base(UnrankedTensorTypeF64)
class ToyShapeInferenceTrait(OpTrait, ABC):
"""
Traits Toy operations should inherit from to infer shape inference based on operands.
"""
@classmethod
@abstractmethod
def infer_shape(cls, op: Operation) -> None:
raise NotImplementedError
@irdl_op_definition
class ConstantOp(IRDLOperation):
"""
Constant operation turns a literal into an SSA value. The data is attached
to the operation as an attribute. For example:
```mlir
%0 = toy.constant dense<[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]>
: tensor<2x3xf64>
```
"""
name = "toy.constant"
value = attr_def(DenseIntOrFPElementsAttr)
res = result_def(TensorTypeF64)
traits = traits_def(Pure())
def __init__(self, value: DenseIntOrFPElementsAttr):
super().__init__(result_types=[value.type], attributes={"value": value})
@staticmethod
def from_list(data: list[float], shape: list[int]) -> ConstantOp:
value = DenseIntOrFPElementsAttr.tensor_from_list(data, f64, shape)
return ConstantOp(value)
@staticmethod
def from_value(value: float) -> ConstantOp:
return ConstantOp(DenseIntOrFPElementsAttr.tensor_from_list([value], f64, []))
def verify_(self) -> None:
if not self.res.type == self.value.type:
raise VerifyException(
"Expected value and result types to be equal: "
f"{self.res.type}, {self.value.type}"
)
def get_type(self) -> TensorTypeF64:
# Constant cannot be unranked
return cast(TensorTypeF64, self.value.type)
def get_shape(self) -> list[int]:
return list(self.get_type().get_shape())
def get_data(self) -> list[float]:
return [float(el.value.data) for el in self.value.data.data]
class InferAddOpShapeTrait(ToyShapeInferenceTrait):
@classmethod
def infer_shape(cls, op: Operation) -> None:
if not isinstance(op, AddOp):
raise TypeError
if not (
isinstance(op_lhs_type := op.lhs.type, TensorType)
and isinstance(op_rhs_type := op.rhs.type, TensorType)
):
return
assert op_lhs_type.get_shape() == op_rhs_type.get_shape()
if isinstance(op_res_type := op.res.type, TensorType):
assert op_lhs_type.get_shape() == op_res_type.get_shape()
else:
op.res.type = op.lhs.type
@irdl_op_definition
class AddOp(IRDLOperation):
"""
The "add" operation performs element-wise addition between two tensors.
The shapes of the tensor operands are expected to match.
"""
name = "toy.add"
lhs = operand_def(AnyTensorTypeF64Constr)
rhs = operand_def(AnyTensorTypeF64Constr)
res = result_def(AnyTensorTypeF64Constr)
traits = traits_def(Pure(), InferAddOpShapeTrait())
def __init__(self, lhs: SSAValue, rhs: SSAValue):
if isa(lhs.type, TensorTypeF64):
result_type = lhs.type
else:
result_type = rhs.type
super().__init__(result_types=[result_type], operands=[lhs, rhs])
def verify_(self):
args = [self.lhs, self.rhs]
shape = None
for arg in args:
# Expect shapes to be the same whenever they are defined, no check for unranked
if isinstance(arg_type := arg.type, TensorType):
if shape is None:
shape = arg_type.shape
else:
if shape != arg_type.shape:
raise VerifyException(
"Expected AddOp args to have the same shape"
)
class FuncOpCallableInterface(CallableOpInterface):
@classmethod
def get_callable_region(cls, op: Operation) -> Region:
assert isinstance(op, FuncOp)
return op.body
@classmethod
def get_argument_types(cls, op: Operation) -> tuple[Attribute, ...]:
assert isinstance(op, FuncOp)
return op.function_type.inputs.data
@classmethod
def get_result_types(cls, op: Operation) -> tuple[Attribute, ...]:
assert isinstance(op, FuncOp)
return op.function_type.outputs.data
@irdl_op_definition
class FuncOp(IRDLOperation):
"""
The "toy.func" operation represents a user defined function. These are
callable SSA-region operations that contain toy computations.
Example:
```mlir
toy.func @main() {
%0 = toy.constant dense<5.500000e+00> : tensor<f64>
%1 = toy.reshape(%0 : tensor<f64>) to tensor<2x2xf64>
toy.print %1 : tensor<2x2xf64>
toy.return
}
```
"""
name = "toy.func"
body = region_def()
sym_name = attr_def(StringAttr)
function_type = attr_def(FunctionType)
sym_visibility = opt_attr_def(StringAttr)
traits = traits_def(SymbolOpInterface(), FuncOpCallableInterface())
def __init__(
self,
name: str,
ftype: FunctionType,
region: Region | type[Region.DEFAULT] = Region.DEFAULT,
/,
private: bool = False,
):
attributes: dict[str, Attribute] = {
"sym_name": StringAttr(name),
"function_type": ftype,
}
if not isinstance(region, Region):
region = Region(Block(arg_types=ftype.inputs))
if private:
attributes["sym_visibility"] = StringAttr("private")
return super().__init__(attributes=attributes, regions=[region])
def verify_(self):
# Check that the returned value matches the type of the function
if len(self.body.blocks) != 1:
raise VerifyException("Expected FuncOp to contain one block")
block = self.body.blocks[0]
if not block.ops:
raise VerifyException("Expected FuncOp to not be empty")
last_op = block.last_op
if not isinstance(last_op, ReturnOp):
raise VerifyException("Expected last op of FuncOp to be a ReturnOp")
operand = last_op.input
operand_type = None if operand is None else operand.type
return_types = self.function_type.outputs.data
if len(return_types):
if len(return_types) == 1:
return_type = return_types[0]
else:
raise VerifyException(
"Expected return type of func to have 0 or 1 values"
)
else:
return_type = None
if operand_type != return_type:
raise VerifyException(
"Expected return value to match return type of function"
)
@irdl_op_definition
class GenericCallOp(IRDLOperation):
name = "toy.generic_call"
arguments = var_operand_def()
callee = attr_def(SymbolRefAttr)
# Note: naming this results triggers an ArgumentError
res = var_result_def(AnyTensorTypeF64Constr)
def __init__(
self,
callee: str | SymbolRefAttr,
operands: list[SSAValue | OpResult],
return_types: list[Attribute],
):
if isinstance(callee, str):
callee = SymbolRefAttr(callee)
return super().__init__(
operands=[operands],
result_types=[return_types],
attributes={"callee": callee},
)
class InferMulOpShapeTrait(ToyShapeInferenceTrait):
@classmethod
def infer_shape(cls, op: Operation) -> None:
if not isinstance(op, MulOp):
raise TypeError
if not (
isinstance(op_lhs_type := op.lhs.type, TensorType)
and isinstance(op_rhs_type := op.rhs.type, TensorType)
):
return
assert op_lhs_type.get_shape() == op_rhs_type.get_shape()
if isinstance(op_res_type := op.res.type, TensorType):
assert op_lhs_type.get_shape() == op_res_type.get_shape()
else:
op.res.type = op.lhs.type
@irdl_op_definition
class MulOp(IRDLOperation):
"""
The "mul" operation performs element-wise multiplication between two
tensors. The shapes of the tensor operands are expected to match.
"""
name = "toy.mul"
lhs = operand_def(AnyTensorTypeF64Constr)
rhs = operand_def(AnyTensorTypeF64Constr)
res = result_def(AnyTensorTypeF64Constr)
traits = traits_def(Pure(), InferMulOpShapeTrait())
def __init__(self, lhs: SSAValue, rhs: SSAValue):
if isa(lhs.type, TensorTypeF64):
result_type = lhs.type
else:
result_type = rhs.type
super().__init__(result_types=[result_type], operands=[lhs, rhs])
def verify_(self):
args = [self.lhs, self.rhs]
shape = None
for arg in args:
# Expect shapes to be the same whenever they are defined, no check for unranked
if isinstance(arg_type := arg.type, TensorType):
if shape is None:
shape = arg_type.shape
else:
if shape != arg_type.shape:
raise VerifyException(
"Expected MulOp args to have the same shape"
)
@irdl_op_definition
class PrintOp(IRDLOperation):
"""
The "print" builtin operation prints a given input tensor, and produces
no results.
"""
name = "toy.print"
input = operand_def()
def __init__(self, input: SSAValue):
return super().__init__(operands=[input])
@irdl_op_definition
class ReturnOp(IRDLOperation):
"""
The "return" operation represents a return operation within a function.
The operation takes an optional tensor operand and produces no results.
The operand type must match the signature of the function that contains
the operation. For example:
```mlir
func @foo() -> tensor<2xf64> {
...
toy.return %0 : tensor<2xf64>
}
```
"""
name = "toy.return"
input = opt_operand_def(AnyTensorTypeF64Constr)
traits = traits_def(IsTerminator())
def __init__(self, input: SSAValue | None = None):
return super().__init__(operands=[input])
class ReshapeOpHasCanonicalizationPatternsTrait(HasCanonicalizationPatternsTrait):
@classmethod
def get_canonicalization_patterns(cls) -> tuple[RewritePattern, ...]:
from ..rewrites.optimise_toy import (
FoldConstantReshapeOpPattern,
ReshapeReshapeOpPattern,
)
return (ReshapeReshapeOpPattern(), FoldConstantReshapeOpPattern())
@irdl_op_definition
class ReshapeOp(IRDLOperation):
"""
Reshape operation is transforming its input tensor into a new tensor with
the same number of elements but different shapes. For example:
```mlir
%0 = toy.reshape (%arg1 : tensor<10xf64>) to tensor<5x2xf64>
```
"""
name = "toy.reshape"
arg = operand_def(AnyTensorTypeF64Constr)
# We expect that the reshape operation returns a statically shaped tensor.
res = result_def(TensorTypeF64)
traits = traits_def(Pure(), ReshapeOpHasCanonicalizationPatternsTrait())
def __init__(self, arg: SSAValue, shape: list[int]):
if not isattr(arg.type, AnyTensorTypeF64Constr):
raise ValueError(
f"Unexpected arg of type {arg.type} passed to ReshapeOp, expected"
" {AnyTensorTypeF64}"
)
element_type = arg.type.element_type
t = TensorTypeF64(element_type, shape)
return super().__init__(result_types=[t], operands=[arg])
@staticmethod
def from_input_and_type(arg: SSAValue, t: TensorTypeF64) -> ReshapeOp:
if not isattr(arg.type, AnyTensorTypeF64Constr):
raise ValueError(
f"Unexpected arg of type {arg.type} passed to ReshapeOp, expected"
" {AnyTensorTypeF64}"
)
return ReshapeOp.create(result_types=[t], operands=[arg])
def verify_(self):
result_type = self.res.type
assert isa(result_type, TensorTypeF64)
if not len(result_type.shape.data):
raise VerifyException("Reshape operation result shape should be defined")
class InferTransposeOpShapeTrait(ToyShapeInferenceTrait):
@classmethod
def infer_shape(cls, op: Operation) -> None:
if not isinstance(op, TransposeOp):
raise TypeError
if not isinstance(op_arg_type := op.arg.type, TensorType):
return
arg_shape = op_arg_type.get_shape()
res_shape = arg_shape[::-1]
if isinstance(op_res_type := op.res.type, TensorType):
assert res_shape == op_res_type.get_shape()
else:
op.res.type = TensorType(f64, res_shape)
class TransposeOpHasCanonicalizationPatternsTrait(HasCanonicalizationPatternsTrait):
@classmethod
def get_canonicalization_patterns(cls) -> tuple[RewritePattern, ...]:
from ..rewrites.optimise_toy import SimplifyRedundantTranspose
return (SimplifyRedundantTranspose(),)
@irdl_op_definition
class TransposeOp(IRDLOperation):
name = "toy.transpose"
arg = operand_def(AnyTensorTypeF64Constr)
res = result_def(AnyTensorTypeF64Constr)
traits = OpTraits(
lambda: (
Pure(),
InferTransposeOpShapeTrait(),
TransposeOpHasCanonicalizationPatternsTrait(),
)
)
def __init__(self, arg: SSAValue):
output_type: TensorTypeF64 | UnrankedTensorTypeF64
if isa(arg.type, TensorTypeF64):
element_type = arg.type.element_type
output_type = TensorType(element_type, list(reversed(arg.type.get_shape())))
else:
if not isa(arg.type, UnrankedTensorTypeF64):
raise ValueError(
f"Unexpected operand of type {arg.type} passed to TransposeOp, "
"expected {TensorTypeF64 | UnrankedTensorTypeF64}"
)
output_type = arg.type
super().__init__(operands=[arg], result_types=[output_type])
class InferCastOpShapeTrait(ToyShapeInferenceTrait):
@classmethod
def infer_shape(cls, op: Operation) -> None:
if not isinstance(op, CastOp):
raise TypeError
if not isinstance(op_arg_type := op.arg.type, TensorType):
return
shape = op_arg_type.get_shape()
if isinstance(op_res_type := op.res.type, TensorType):
assert shape == op_res_type.get_shape()
else:
op.res.type = TensorType(f64, shape)
@irdl_op_definition
class CastOp(IRDLOperation):
name = "toy.cast"
arg = operand_def(AnyTensorTypeF64Constr)
res = result_def(AnyTensorTypeF64Constr)
traits = traits_def(Pure(), InferCastOpShapeTrait())
def __init__(self, arg: SSAValue, res: AnyTensorTypeF64 | None = None):
if res is None:
res = UnrankedTensorType(f64)
return super().__init__(
operands=[arg],
result_types=[res],
)
Toy = Dialect(
"toy",
[
ConstantOp,
AddOp,
FuncOp,
GenericCallOp,
PrintOp,
MulOp,
ReturnOp,
ReshapeOp,
TransposeOp,
CastOp,
],
[],
)