-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathindex_to_hf.py
76 lines (57 loc) · 2.73 KB
/
index_to_hf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"""
# Example: Indexing BEIR dataset and upload to Hugging Face Hub
This will show how to index a dataset from BEIR and upload it to the Hugging Face Hub.
To run this example, you need to install the following dependencies:
```bash
pip install beir bm25s[full]
```
Make sure to replace `write-your-username-here` with your Hugging Face username,
or set the `HF_USERNAME` environment variable.
Then, run with:
```
export HF_USERNAME="write-your-username-here"
export HF_TOKEN="your-hf-token"
python examples/index_and_upload_to_hf.py
```
"""
import os
import beir.util
from beir.datasets.data_loader import GenericDataLoader
import Stemmer
import bm25s.hf
from bm25s.utils.beir import BASE_URL
def main(user, save_dir="datasets", repo_name="bm25s-scifact-testing", dataset="scifact"):
# First, use the beir library to download the dataset, and process it
data_path = beir.util.download_and_unzip(BASE_URL.format(dataset), save_dir)
corpus, _, __ = GenericDataLoader(data_folder=data_path).load(split="test")
corpus_records = [
{'id': k, 'title': v["title"], 'text': v["text"]} for k, v in corpus.items()
]
corpus_lst = [r["title"] + " " + r["text"] for r in corpus_records]
# We will use the snowball stemmer from the PyStemmer library and tokenize the corpus
stemmer = Stemmer.Stemmer("english")
corpus_tokenized = bm25s.tokenize(corpus_lst, stemmer=stemmer)
# We create a BM25 retriever, index the corpus, and save to Hugging Face Hub
retriever = bm25s.hf.BM25HF()
retriever.index(corpus_tokenized)
hf_token = os.getenv("HF_TOKEN")
retriever.save_to_hub(repo_id=f"{user}/{repo_name}", token=hf_token, corpus=corpus_records)
# you can do the same with a tokenizer class
tokenizer = bm25s.hf.TokenizerHF(stemmer=stemmer)
tokenizer.tokenize(corpus_lst, update_vocab=True)
tokenizer.save_vocab_to_hub(repo_id=f"{user}/{repo_name}", token=hf_token)
# you can also load the retriever and tokenizer from the hub
tokenizer_new = bm25s.hf.TokenizerHF(stemmer=stemmer, stopwords=[])
tokenizer_new.load_vocab_from_hub(repo_id=f"{user}/{repo_name}", token=hf_token)
# You can do the same for stopwords
stopwords = tokenizer.stopwords
tokenizer.save_stopwords_to_hub(repo_id=f"{user}/{repo_name}", token=hf_token)
# you can also load the stopwords from the hub
tokenizer_new.load_stopwords_from_hub(repo_id=f"{user}/{repo_name}", token=hf_token)
print("Original stopwords:", stopwords)
print("Reloaded stopwords:", tokenizer_new.stopwords)
if __name__ == "__main__":
user = os.getenv("HF_USERNAME", "write-your-username-here")
cont = input(f"Are you sure you want to upload as user '{user}'? (yes/no): ")
if cont.lower() == "yes":
main(user=user)