forked from soumith/imagenet-multiGPU.torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
util.lua
65 lines (60 loc) · 2.09 KB
/
util.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
--require 'cunn'
local ffi=require 'ffi'
function makeDataParallel(model, nGPU)
-- if nGPU > 1 then
-- print('converting module to nn.DataParallelTable')
-- assert(nGPU <= cutorch.getDeviceCount(), 'number of GPUs less than nGPU specified')
-- local model_single = model
-- model = nn.DataParallelTable(1)
-- for i=1, nGPU do
-- cutorch.setDevice(i)
-- model:add(model_single:clone():cuda(), i)
-- end
-- end
-- cutorch.setDevice(opt.GPU)
return model
end
local function cleanDPT(module)
-- This assumes this DPT was created by the function above: all the
-- module.modules are clones of the same network on different GPUs
-- hence we only need to keep one when saving the model to the disk.
local newDPT = nn.DataParallelTable(1)
-- cutorch.setDevice(opt.GPU)
-- newDPT:add(module:get(1), opt.GPU)
return newDPT
end
function saveDataParallel(filename, model)
if torch.type(model) == 'nn.DataParallelTable' then
torch.save(filename, cleanDPT(model))
elseif torch.type(model) == 'nn.Sequential' then
local temp_model = nn.Sequential()
for i, module in ipairs(model.modules) do
if torch.type(module) == 'nn.DataParallelTable' then
temp_model:add(cleanDPT(module))
else
temp_model:add(module)
end
end
torch.save(filename, temp_model)
else
error('This saving function only works with Sequential or DataParallelTable modules.')
end
end
function loadDataParallel(filename, nGPU)
if opt.backend == 'cudnn' then
require 'cudnn'
end
local model = torch.load(filename)
if torch.type(model) == 'nn.DataParallelTable' then
return makeDataParallel(model:get(1):float(), nGPU)
elseif torch.type(model) == 'nn.Sequential' then
for i,module in ipairs(model.modules) do
if torch.type(module) == 'nn.DataParallelTable' then
model.modules[i] = makeDataParallel(module:get(1):float(), nGPU)
end
end
return model
else
error('The loaded model is not a Sequential or DataParallelTable module.')
end
end