-
Notifications
You must be signed in to change notification settings - Fork 0
/
Concat.lua
195 lines (174 loc) · 6.19 KB
/
Concat.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
local Concat, parent = torch.class('mklnn.Concat', 'nn.Container')
local ffi = require 'ffi'
local wrapper = mklnn.wrapper
local getType = mklnn.getType
function Concat:__init(dimension)
parent.__init(self)
self.outputSize = torch.LongStorage()
self.dimension = dimension
self.mkldnnInitOK = false
self.firstIteration = true
end
function Concat:updateOutput(input)
self.outputSize = self.outputSize or torch.LongStorage()
if self.firstIteration then
self.dnnPrimitives = self.dnnPrimitives and self.dnnPrimitives:zero() or torch.LongTensor(5):zero():mkl()
self.mkldnnInitOK = false
self.firstIteration = false
else
self.mkldnnInitOK = true
end
local outs_ptr = {}
local outs = {}
for i=1,#self.modules do
local currentOutput = self:rethrowErrors(self.modules[i], i, 'updateOutput', input)
outs[i] = currentOutput
outs_ptr[i] = currentOutput:cdata()
if i == 1 then
self.outputSize:resize(currentOutput:dim()):copy(currentOutput:size())
else
self.outputSize[self.dimension] = self.outputSize[self.dimension] + currentOutput:size(self.dimension)
end
end
string_type = torch.type(outs[1])
cdefs = string_type:gsub('torch.', 'struct TH')
type_outs_ptr = cdefs .. "*[" .. #outs_ptr .."]"
ffi_outs = ffi.new(type_outs_ptr, outs_ptr)
self.output = self.output:mkl()
self.output:resize(self.outputSize)
wrapper(getType(self.output),
'Concat_updateOutput',
self.dnnPrimitives:cdata(),
self.mkldnnInitOK,
ffi_outs,
self.output:cdata(),
tonumber(#self.modules)
)
return self.output
end
function Concat:updateGradInput(input, gradOutput)
self.gradInput = self.gradInput:mkl()
self.gradInput:resizeAs(input)
local gradOutputs = {}
local gradOutputs_ptr = {}
for i,module in ipairs(self.modules) do
local gradOutputPart = torch.FloatTensor():mkl()
gradOutputPart:resizeAs(module.output)
gradOutputs[i] = gradOutputPart
gradOutputs_ptr[i] = gradOutputPart:cdata()
end
string_type = torch.type(gradOutputs[1])
cdefs = string_type:gsub('torch.', 'struct TH')
type_gradOuts_ptr = cdefs .. "*[" .. #gradOutputs_ptr .."]"
ffi_gradOuts = ffi.new(type_gradOuts_ptr, gradOutputs_ptr)
wrapper(getType(gradOutput),
'Concat_backward_split',
self.dnnPrimitives:cdata(),
self.mkldnnInitOK,
ffi_gradOuts,
gradOutput:cdata(),
tonumber(#self.modules)
)
for i,module in ipairs(self.modules) do
local currentOutput = module.output
gradOutputPart = gradOutputs[i]
local currentGradInput = self:rethrowErrors(module, i, 'updateGradInput', input, gradOutputPart)
if currentGradInput then -- if the module does not produce a gradInput (for example first layer), then ignore it and move on.
if i==1 then
self.gradInput:copy(currentGradInput)
else
self.gradInput:add(currentGradInput)
end
end
end
return self.gradInput
end
function Concat:accGradParameters(input, gradOutput, scale)
scale = scale or 1
local offset = 1
for i,module in ipairs(self.modules) do
local currentOutput = module.output
local gradOutputPart = torch.FloatTensor():mkl()
gradOutputPart:resizeAs(module.output)
self:rethrowErrors(module, i, 'accGradParameters',
input,
gradOutputPart,
scale)
offset = offset + currentOutput:size(self.dimension)
end
end
function Concat:backward(input, gradOutput, scale)
self.gradInput = self.gradInput:mkl()
self.gradInput:resizeAs(input)
local gradOutputs = {}
local gradOutputs_ptr = {}
for i,module in ipairs(self.modules) do
local gradOutputPart = torch.FloatTensor():mkl()
gradOutputPart:resizeAs(module.output)
gradOutputs[i] = gradOutputPart
gradOutputs_ptr[i] = gradOutputPart:cdata()
end
string_type = torch.type(gradOutputs[1])
cdefs = string_type:gsub('torch.', 'struct TH')
type_gradOuts_ptr = cdefs .. "*[" .. #gradOutputs_ptr .."]"
ffi_gradOuts = ffi.new(type_gradOuts_ptr, gradOutputs_ptr)
wrapper(getType(gradOutput),
'Concat_backward_split',
self.dnnPrimitives:cdata(),
self.mkldnnInitOK,
ffi_gradOuts,
gradOutput:cdata(),
tonumber(#self.modules)
)
for i,module in ipairs(self.modules) do
local currentOutput = module.output
gradOutputPart = gradOutputs[i]
local currentGradInput = self:rethrowErrors(module, i, 'updateGradInput', input, gradOutputPart)
if currentGradInput then -- if the module does not produce a gradInput (for example first layer), then ignore it and move on.
if i==1 then
self.gradInput:copy(currentGradInput)
else
self.gradInput:add(currentGradInput)
end
end
end
return self.gradInput
end
function Concat:accUpdateGradParameters(input, gradOutput, lr)
local offset = 1
for i,module in ipairs(self.modules) do
local currentOutput = module.output
self:rethrowErrors(module, i, 'accUpdateGradParameters',
input,
gradOutput:narrow(self.dimension, offset, currentOutput:size(self.dimension)),
lr)
offset = offset + currentOutput:size(self.dimension)
end
end
function Concat:__tostring__()
local tab = ' '
local line = '\n'
local next = ' |`-> '
local ext = ' | '
local extlast = ' '
local last = ' ... -> '
local str = torch.type(self)
str = str .. ' {' .. line .. tab .. 'input'
for i=1,#self.modules do
if i == #self.modules then
str = str .. line .. tab .. next .. '(' .. i .. '): ' .. tostring(self.modules[i]):gsub(line, line .. tab .. extlast)
else
str = str .. line .. tab .. next .. '(' .. i .. '): ' .. tostring(self.modules[i]):gsub(line, line .. tab .. ext)
end
end
str = str .. line .. tab .. last .. 'output'
str = str .. line .. '}'
return str
end
function Concat:clearState()
print('===============Concat')
self.dnnPrimitives = nil
self.mkldnnInitOK = false
self.firstIteration = true
return parent.clearState(self)
end