From 21176d65abef5e78685356fc7d599efdfb997550 Mon Sep 17 00:00:00 2001 From: dcrmg <35922726+dcrmg@users.noreply.github.com> Date: Mon, 6 Jan 2020 20:29:56 +0800 Subject: [PATCH 1/3] Update train.py --- train.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/train.py b/train.py index cc3c049..a68488e 100644 --- a/train.py +++ b/train.py @@ -6,7 +6,9 @@ import timeit import math import numpy as np -import matplotlib.pyplot as plt +import matplotlib +matplotlib.use('Agg') +from matplotlib import pyplot as plt import torch.backends.cudnn as cudnn from argparse import ArgumentParser # user From bf8cfe9a37231a128fb168c42df5c210ef03c08b Mon Sep 17 00:00:00 2001 From: dcrmg <35922726+dcrmg@users.noreply.github.com> Date: Mon, 6 Jan 2020 20:32:57 +0800 Subject: [PATCH 2/3] Update train.py --- train.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/train.py b/train.py index a68488e..ecfb383 100644 --- a/train.py +++ b/train.py @@ -364,8 +364,8 @@ def val(args, val_loader, model): with torch.no_grad(): # input_var = Variable(input).cuda() input_var = input.cuda() - start_time = time.time() - output = model(input_var) + start_time = time.time() + output = model(input_var) time_taken = time.time() - start_time print("[%d/%d] time: %.2f" % (i + 1, total_batches, time_taken)) output = output.cpu().data[0].numpy() From 622f4beaf32d3c362ddba1c84b0bd294683e6f9c Mon Sep 17 00:00:00 2001 From: dcrmg <35922726+dcrmg@users.noreply.github.com> Date: Mon, 6 Jan 2020 20:35:46 +0800 Subject: [PATCH 3/3] Update dataset_builder.py --- builders/dataset_builder.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/builders/dataset_builder.py b/builders/dataset_builder.py index 8342357..f78a7b7 100644 --- a/builders/dataset_builder.py +++ b/builders/dataset_builder.py @@ -7,7 +7,7 @@ def build_dataset_train(dataset, input_size, batch_size, train_type, random_scale, random_mirror, num_workers): data_dir = os.path.join('./dataset/', dataset) - dataset_list = os.path.join(dataset, '_trainval_list.txt') + dataset_list = dataset + '_trainval_list.txt' train_data_list = os.path.join(data_dir, dataset + '_' + train_type + '_list.txt') val_data_list = os.path.join(data_dir, dataset + '_val' + '_list.txt') inform_data_file = os.path.join('./dataset/inform/', dataset + '_inform.pkl') @@ -43,7 +43,7 @@ def build_dataset_train(dataset, input_size, batch_size, train_type, random_scal valLoader = data.DataLoader( CityscapesValDataSet(data_dir, val_data_list, f_scale=1, mean=datas['mean']), - batch_size=1, shuffle=True, num_workers=num_workers, pin_memory=True, + batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True, drop_last=True) return datas, trainLoader, valLoader @@ -58,7 +58,7 @@ def build_dataset_train(dataset, input_size, batch_size, train_type, random_scal valLoader = data.DataLoader( CamVidValDataSet(data_dir, val_data_list, f_scale=1, mean=datas['mean']), - batch_size=1, shuffle=True, num_workers=num_workers, pin_memory=True) + batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True) return datas, trainLoader, valLoader