forked from asyml/texar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatchfirst_bptt.py
71 lines (64 loc) · 3.14 KB
/
batchfirst_bptt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Copyright 2018 The Texar Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from torchtext.data import BPTTIterator, Dataset, Batch
class BatchFirstBPTTIterator(BPTTIterator):
"""Defines an iterator for language modeling tasks that use BPTT.
Provides contiguous streams of examples together with targets that are
one timestep further forward, for language modeling training with
backpropagation through time (BPTT). Expects a Dataset with a single
example and a single field called 'text' and produces Batches with text and
target attributes.
All batches will have sizes [batch_size, bptt_len]
Attributes:
dataset: The Dataset object to load Examples from.
batch_size: Batch size.
bptt_len: Length of sequences for backpropagation through time.
sort_key: A key to use for sorting examples in order to batch together
examples with similar lengths and minimize padding. The sort_key
provided to the Iterator constructor overrides the sort_key
attribute of the Dataset, or defers to it if None.
train: Whether the iterator represents a train set.
repeat: Whether to repeat the iterator for multiple epochs.
shuffle: Whether to shuffle examples between epochs.
sort: Whether to sort examples according to self.sort_key.
Note that repeat, shuffle, and sort default to train, train, and
(not train).
device: Device to create batches on. Use -1 for CPU and None for the
currently active GPU device.
"""
def __len__(self):
return math.floor(
(len(self.dataset[0].text) / self.batch_size - 1) / self.bptt_len)
def __iter__(self):
text = self.dataset[0].text
TEXT = self.dataset.fields['text']
TEXT.eos_token = None
pad_num = int(math.ceil(len(text) / self.batch_size) *
self.batch_size - len(text))
text = text + ([TEXT.pad_token] * pad_num)
data = TEXT.numericalize([text], device=self.device)
data = data.view(self.batch_size, -1).contiguous()
dataset = Dataset(examples=self.dataset.examples,
fields=[('text', TEXT), ('target', TEXT)])
while True:
for i in range(0, len(self) * self.bptt_len, self.bptt_len):
self.iterations += 1
seq_len = self.bptt_len
yield Batch.fromvars(
dataset, self.batch_size,
text=data[:, i:i + seq_len],
target=data[:, i + 1:i + 1 + seq_len])
if not self.repeat:
return