forked from aws/amazon-sagemaker-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist.py
242 lines (189 loc) · 8.06 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from __future__ import print_function
import argparse
import json
import logging
import os
import time
import mxnet as mx
import numpy as np
from mxnet import autograd, gluon
from mxnet.gluon import nn
logging.basicConfig(level=logging.DEBUG)
# ------------------------------------------------------------ #
# Training methods #
# ------------------------------------------------------------ #
def train(args):
# SageMaker passes num_cpus, num_gpus and other args we can use to tailor training to
# the current container environment, but here we just use simple cpu context.
ctx = mx.cpu()
# retrieve the hyperparameters we set in notebook (with some defaults)
batch_size = args.batch_size
epochs = args.epochs
learning_rate = args.learning_rate
momentum = args.momentum
log_interval = args.log_interval
num_gpus = int(os.environ["SM_NUM_GPUS"])
current_host = args.current_host
hosts = args.hosts
model_dir = args.model_dir
CHECKPOINTS_DIR = "/opt/ml/checkpoints"
checkpoints_enabled = os.path.exists(CHECKPOINTS_DIR)
# load training and validation data
# we use the gluon.data.vision.MNIST class because of its built in mnist pre-processing logic,
# but point it at the location where SageMaker placed the data files, so it doesn't download them again.
training_dir = args.train
train_data = get_train_data(training_dir + "/train", batch_size)
val_data = get_val_data(training_dir + "/test", batch_size)
# define the network
net = define_network()
# Collect all parameters from net and its children, then initialize them.
net.initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx)
# Trainer is for updating parameters with gradient.
if len(hosts) == 1:
kvstore = "device" if num_gpus > 0 else "local"
else:
kvstore = "dist_device_sync" if num_gpus > 0 else "dist_sync"
trainer = gluon.Trainer(
net.collect_params(),
"sgd",
{"learning_rate": learning_rate, "momentum": momentum},
kvstore=kvstore,
)
metric = mx.metric.Accuracy()
loss = gluon.loss.SoftmaxCrossEntropyLoss()
# shard the training data in case we are doing distributed training. Alternatively to splitting in memory,
# the data could be pre-split in S3 and use ShardedByS3Key to do distributed training.
if len(hosts) > 1:
train_data = [x for x in train_data]
shard_size = len(train_data) // len(hosts)
for i, host in enumerate(hosts):
if host == current_host:
start = shard_size * i
end = start + shard_size
break
train_data = train_data[start:end]
net.hybridize()
best_val_score = 0.0
for epoch in range(epochs):
# reset data iterator and metric at begining of epoch.
metric.reset()
btic = time.time()
for i, (data, label) in enumerate(train_data):
# Copy data to ctx if necessary
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
# Start recording computation graph with record() section.
# Recorded graphs can then be differentiated with backward.
with autograd.record():
output = net(data)
L = loss(output, label)
L.backward()
# take a gradient step with batch_size equal to data.shape[0]
trainer.step(data.shape[0])
# update metric at last.
metric.update([label], [output])
if i % log_interval == 0 and i > 0:
name, acc = metric.get()
print(
"[Epoch %d Batch %d] Training: %s=%f, %f samples/s"
% (epoch, i, name, acc, batch_size / (time.time() - btic))
)
btic = time.time()
name, acc = metric.get()
print("[Epoch %d] Training: %s=%f" % (epoch, name, acc))
name, val_acc = test(ctx, net, val_data)
print("[Epoch %d] Validation: %s=%f" % (epoch, name, val_acc))
# checkpoint the model, params and optimizer states in the folder /opt/ml/checkpoints
if checkpoints_enabled and val_acc > best_val_score:
best_val_score = val_acc
logging.info("Saving the model, params and optimizer state.")
net.export(CHECKPOINTS_DIR + "/%.4f-gluon_mnist" % (best_val_score), epoch)
trainer.save_states(
CHECKPOINTS_DIR + "/%.4f-gluon_mnist-%d.states" % (best_val_score, epoch)
)
if current_host == hosts[0]:
save(net, model_dir)
def save(net, model_dir):
# save the model
net.export("%s/model" % model_dir)
def define_network():
net = nn.HybridSequential()
with net.name_scope():
net.add(nn.Dense(128, activation="relu"))
net.add(nn.Dense(64, activation="relu"))
net.add(nn.Dense(10))
return net
def input_transformer(data, label):
data = data.reshape((-1,)).astype(np.float32) / 255.0
return data, label
def get_train_data(data_dir, batch_size):
return gluon.data.DataLoader(
gluon.data.vision.MNIST(data_dir, train=True, transform=input_transformer),
batch_size=batch_size,
shuffle=True,
last_batch="rollover",
)
def get_val_data(data_dir, batch_size):
return gluon.data.DataLoader(
gluon.data.vision.MNIST(data_dir, train=False, transform=input_transformer),
batch_size=batch_size,
shuffle=False,
)
def test(ctx, net, val_data):
metric = mx.metric.Accuracy()
for data, label in val_data:
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
output = net(data)
metric.update([label], [output])
return metric.get()
# ------------------------------------------------------------ #
# Hosting methods #
# ------------------------------------------------------------ #
def model_fn(model_dir):
"""
Load the gluon model. Called once when hosting service starts.
:param: model_dir The directory where model files are stored.
:return: a model (in this case a Gluon network)
"""
net = gluon.SymbolBlock.imports(
"%s/model-symbol.json" % model_dir,
["data"],
"%s/model-0000.params" % model_dir,
)
return net
def transform_fn(net, data, input_content_type, output_content_type):
"""
Transform a request using the Gluon model. Called once per request.
:param net: The Gluon model.
:param data: The request payload.
:param input_content_type: The request content type.
:param output_content_type: The (desired) response content type.
:return: response payload and content type.
"""
# we can use content types to vary input/output handling, but
# here we just assume json for both
parsed = json.loads(data)
nda = mx.nd.array(parsed)
output = net(nda)
prediction = mx.nd.argmax(output, axis=1)
response_body = json.dumps(prediction.asnumpy().tolist()[0])
return response_body, output_content_type
# ------------------------------------------------------------ #
# Training execution #
# ------------------------------------------------------------ #
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--batch-size", type=int, default=100)
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--learning-rate", type=float, default=0.1)
parser.add_argument("--momentum", type=float, default=0.9)
parser.add_argument("--log-interval", type=float, default=100)
parser.add_argument("--model-dir", type=str, default=os.environ["SM_MODEL_DIR"])
parser.add_argument("--train", type=str, default=os.environ["SM_CHANNEL_TRAINING"])
parser.add_argument("--current-host", type=str, default=os.environ["SM_CURRENT_HOST"])
parser.add_argument("--hosts", type=list, default=json.loads(os.environ["SM_HOSTS"]))
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
train(args)