forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert.py
283 lines (244 loc) · 12.8 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
"""
Utilities for exporting a model to our custom format.
"""
import numpy as np
import torch
from tensorrt_llm._utils import torch_to_numpy
def cpu_map_location(storage, loc):
return storage.cpu()
def gpu_map_location(storage, loc):
if loc.startswith("cuda"):
training_gpu_idx = int(loc.split(":")[1])
inference_gpu_idx = training_gpu_idx % torch.cuda.device_count()
return storage.cuda(inference_gpu_idx)
elif loc.startswith("cpu"):
return storage.cpu()
else:
raise ValueError(f"Not handled {loc}")
def save_val(val, dir, key, tp_num=None):
suffix = "bin" if tp_num is None else f"{tp_num}.bin"
val.tofile(dir / f"model.{key}.{suffix}")
def save_split(split_vals, dir, key, i, split_factor):
for j, val in enumerate(split_vals):
save_val(val, dir, key, i * split_factor + j)
def generate_int8(weights, act_range, is_qkv=False, multi_query_mode=False):
"""
This function has two purposes:
- compute quantized weights, scaled either per-tensor or per-column
- compute scaling factors
Depending on the GEMM API (CUTLASS/CUBLAS) the required scaling factors differ.
CUTLASS uses two sets of scaling factors. One for the activation X, one for the weight W.
CUBLAS only has one (we can't do per-row scaling). So we must provide pre-multiplied scaling factor.
Here is the list of what we need (T means per-tensor, C per-column):
- scale_x_orig_quant puts fp activation into the quantized range (i.e. [-128, 127], for int8). Used before the GEMM. (T)
- scale_y_quant_orig puts quantized activation into the fp range. Used if the GEMM outputs int8. (T)
- scale_w_quant_orig puts weights from quant range to fp range (used with CUTLASS) (T, C)
- scale_y_accum_quant puts the GEMM result (XW) from accumulation range (int32)
to quant range (int8) (used for CUBLAS) (T, C)
Note that we don't do anything special about row-parallel GEMM. Theoretically, we could have per-GPU scaling factors too,
but then the model would change depending on the number of GPUs used.
For QKV projection, the behavior is special. Even if we have a single matrix to perform QKV projection, we consider it
as three different matrices: Q, K, and V. So per-tensor actually means one scaling factor for each Q, K and V.
"""
# compute weight scaling factors for fp->int8 and int8->fp
if is_qkv and not multi_query_mode:
scale_w_orig_quant_t = 127. / act_range["w"].reshape(3, -1).max(
dim=-1, keepdims=True)[0].cpu().numpy()
scale_w_orig_quant_c = 127. / act_range["w"].reshape(3,
-1).cpu().numpy()
elif is_qkv and multi_query_mode:
raise ValueError(
f"Multi-query w/ int8 quant has not been supported yet")
else:
scale_w_orig_quant_t = 127. / act_range["w"].max().cpu().numpy()
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
scale_w_quant_orig_t = 1.0 / scale_w_orig_quant_t
scale_w_quant_orig_c = 1.0 / scale_w_orig_quant_c
# compute the rest of needed scaling factors
scale_x_orig_quant_t = np.array(127. / act_range["x"].max().item())
scale_y_orig_quant_t = np.array(127. / act_range["y"].max().item())
scale_y_quant_orig_t = np.array(act_range["y"].max().item() / 127.)
scale_y_accum_quant_t = scale_y_orig_quant_t / (scale_x_orig_quant_t *
scale_w_orig_quant_t)
scale_y_accum_quant_c = scale_y_orig_quant_t / (scale_x_orig_quant_t *
scale_w_orig_quant_c)
if is_qkv:
scale_y_accum_quant_t = np.broadcast_to(scale_y_accum_quant_t,
scale_w_orig_quant_c.shape)
scale_w_quant_orig_t = np.broadcast_to(scale_w_quant_orig_t,
scale_w_orig_quant_c.shape)
to_i8 = lambda x: x.round().clip(-127, 127).astype(np.int8)
return {
"weight.int8": to_i8(weights * scale_w_orig_quant_t),
"weight.int8.col": to_i8(weights * scale_w_orig_quant_c),
"scale_x_orig_quant": scale_x_orig_quant_t.astype(np.float32),
"scale_w_quant_orig": scale_w_quant_orig_t.astype(np.float32),
"scale_w_quant_orig.col": scale_w_quant_orig_c.astype(np.float32),
"scale_y_accum_quant": scale_y_accum_quant_t.astype(np.float32),
"scale_y_accum_quant.col": scale_y_accum_quant_c.astype(np.float32),
"scale_y_quant_orig": scale_y_quant_orig_t.astype(np.float32),
}
def write_int8(vals,
dir,
base_key,
split_dim,
tp_rank,
split_factor,
kv_cache_only=False):
if not kv_cache_only:
save_split(np.split(vals["weight.int8"], split_factor, axis=split_dim),
dir, f"{base_key}.weight.int8", tp_rank, split_factor)
save_split(
np.split(vals["weight.int8.col"], split_factor, axis=split_dim),
dir, f"{base_key}.weight.int8.col", tp_rank, split_factor)
saved_keys_once = ["scale_y_quant_orig"]
if not kv_cache_only:
saved_keys_once += [
"scale_x_orig_quant", "scale_w_quant_orig", "scale_y_accum_quant"
]
# per-column scaling factors are loaded per-gpu for ColumnParallel GEMMs (QKV, FC1)
if not kv_cache_only:
if split_dim == -1:
save_split(
np.split(vals["scale_w_quant_orig.col"],
split_factor,
axis=split_dim), dir,
f"{base_key}.scale_w_quant_orig.col", tp_rank, split_factor)
save_split(
np.split(vals["scale_y_accum_quant.col"],
split_factor,
axis=split_dim), dir,
f"{base_key}.scale_y_accum_quant.col", tp_rank, split_factor)
else:
saved_keys_once += [
"scale_w_quant_orig.col", "scale_y_accum_quant.col"
]
if tp_rank == 0:
for save_key in saved_keys_once:
save_val(vals[save_key], dir, f"{base_key}.{save_key}")
# Note: in multi_query_mode, only query heads are split between multiple GPUs, while key/value head
# are not split as there is only one head per key/value.
@torch.no_grad()
def split_and_save_weight(tp_rank, saved_dir, split_factor, key, vals,
storage_type, act_range, config):
use_attention_nemo_shape = config.get("use_attention_nemo_shape", False)
split_gated_activation = config.get("split_gated_activation", False)
num_attention_heads = config.get("num_attention_heads", 0)
tp_size = config.get("tp_size", 1)
int8_outputs = config.get("int8_outputs", None)
multi_query_mode = config.get("multi_query_mode", False)
local_dim = config.get("local_dim", None)
save_int8 = int8_outputs == "all" or int8_outputs == "kv_cache_only"
if not isinstance(vals, list):
vals = [vals]
if config.get("transpose_weights", False) and vals[0].ndim == 2:
vals = [val.T for val in vals]
if "layernorm.weight" in key and config.get("apply_layernorm_1p", False):
vals = [val + 1.0 for val in vals]
vals = [torch_to_numpy(val.cpu().to(storage_type)) for val in vals]
if "input_layernorm.weight" in key or "input_layernorm.bias" in key or \
"attention.dense.bias" in key or "post_attention_layernorm.weight" in key or \
"post_attention_layernorm.bias" in key or "mlp.dense_4h_to_h.bias" in key or \
"final_layernorm.weight" in key or "final_layernorm.bias" in key or \
"word_embeddings_layernorm.weight" in key or "word_embeddings_layernorm.bias" in key:
# shared weights, only need to convert the weights of rank 0
if tp_rank == 0:
save_val(vals[0], saved_dir, key)
elif "attention.dense.weight" in key or "mlp.dense_4h_to_h.weight" in key:
cat_dim = 0
val = np.concatenate(vals, axis=cat_dim)
split_vals = np.split(val, split_factor, axis=cat_dim)
save_split(split_vals, saved_dir, key, tp_rank, split_factor)
if act_range is not None and int8_outputs == "all":
base_key = key.replace(".weight", "")
vals_i8 = generate_int8(val,
act_range,
multi_query_mode=multi_query_mode)
write_int8(vals_i8, saved_dir, base_key, cat_dim, tp_rank,
split_factor)
elif "mlp.dense_h_to_4h.weight" in key or "mlp.dense_h_to_4h.bias" in key:
if split_gated_activation:
splits = [np.split(val, 2, axis=-1) for val in vals]
vals, gates = list(zip(*splits))
cat_dim = -1
val = np.concatenate(vals, axis=cat_dim)
split_vals = np.split(val, split_factor, axis=cat_dim)
save_split(split_vals, saved_dir, key, tp_rank, split_factor)
if act_range is not None and int8_outputs == "all":
base_key = key.replace(".weight", "")
vals_i8 = generate_int8(val,
act_range,
multi_query_mode=multi_query_mode)
write_int8(vals_i8, saved_dir, base_key, cat_dim, tp_rank,
split_factor)
if split_gated_activation:
assert not save_int8
prefix, dot, suffix = key.rpartition(".")
key = prefix + ".gate" + dot + suffix
gate = np.concatenate(gates, axis=cat_dim)
split_vals = np.split(gate, split_factor, axis=cat_dim)
save_split(split_vals, saved_dir, key, tp_rank, split_factor)
elif "attention.query_key_value.bias" in key:
if local_dim is None:
local_dim = vals[0].shape[-1] // 3
if multi_query_mode:
val = vals[0]
# out_feature = local_dim + 2 * head_size; assumes local_dim equals to hidden_dim
b_q, b_kv = np.split(val, [local_dim], axis=-1)
b_q_split = np.split(b_q, split_factor, axis=-1)
split_vals = [np.concatenate((i, b_kv), axis=-1) for i in b_q_split]
else:
if use_attention_nemo_shape:
head_num = num_attention_heads // tp_size
size_per_head = local_dim // num_attention_heads
nemo_shape = (head_num, 3, size_per_head)
vals = [val.reshape(nemo_shape) for val in vals]
vals = [val.transpose(1, 0, 2) for val in vals]
vals = [val.reshape(3, local_dim) for val in vals]
val = np.concatenate(vals, axis=-1)
split_vals = np.split(val, split_factor, axis=-1)
save_split(split_vals, saved_dir, key, tp_rank, split_factor)
elif "attention.query_key_value.weight" in key:
hidden_dim = vals[0].shape[0]
if local_dim is None:
local_dim = vals[0].shape[-1] // 3
if multi_query_mode:
val = vals[0]
# out_feature = local_dim + 2 * head_size; assumes local_dim equals to hidden_dim
head_size = (val.shape[-1] - local_dim) // 2
val = val.reshape(hidden_dim, local_dim + 2 * head_size)
w_q, w_kv = np.split(val, [local_dim], axis=-1)
w_q_split = np.split(w_q, split_factor, axis=-1)
split_vals = [np.concatenate((i, w_kv), axis=-1) for i in w_q_split]
else:
if use_attention_nemo_shape:
head_num = num_attention_heads // tp_size
size_per_head = hidden_dim // num_attention_heads
vals = [
val.reshape(hidden_dim, head_num, 3, size_per_head)
for val in vals
]
vals = [val.transpose(0, 2, 1, 3) for val in vals]
vals = [val.reshape(hidden_dim, 3, local_dim) for val in vals]
cat_dim = -1
val = np.concatenate(vals, axis=cat_dim)
split_vals = np.split(val, split_factor, axis=cat_dim)
save_split(split_vals, saved_dir, key, tp_rank, split_factor)
if save_int8:
base_key = key.replace(".weight", "")
vals_i8 = generate_int8(val,
act_range,
is_qkv=True,
multi_query_mode=multi_query_mode)
write_int8(vals_i8,
saved_dir,
base_key,
cat_dim,
tp_rank,
split_factor,
kv_cache_only=int8_outputs == "kv_cache_only")
elif "attention.dense.smoother" in key or "mlp.dense_4h_to_h.smoother" in key:
split_vals = np.split(vals[0], split_factor, axis=0)
save_split(split_vals, saved_dir, key, tp_rank, split_factor)
else:
print(f"[WARNING] {key} not handled by converter")