forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_debugging_api.py
120 lines (98 loc) · 4.31 KB
/
test_debugging_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
from torch import nn
import tensorrt_llm
from tensorrt_llm import Module, Tensor
class TorchMLP(nn.Module):
def __init__(self, hidden_size, ffn_hidden_size, bias=True):
super().__init__()
self.fc = nn.Linear(hidden_size, ffn_hidden_size, bias=bias)
self.proj = nn.Linear(ffn_hidden_size, hidden_size, bias=bias)
def forward(self, hidden_states):
inter = self.fc(hidden_states)
inter = nn.functional.relu(inter)
output = self.proj(inter)
return output, inter
class MLP(Module):
def __init__(self,
hidden_size,
ffn_hidden_size,
bias=True,
tp_group=None,
tp_size=1):
super().__init__()
self.fc = tensorrt_llm.layers.ColumnLinear(hidden_size,
ffn_hidden_size,
bias=bias,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
self.proj = tensorrt_llm.layers.RowLinear(ffn_hidden_size,
hidden_size,
bias=bias,
tp_group=tp_group,
tp_size=tp_size)
def forward(self, hidden_states):
inter = self.fc(hidden_states)
inter = tensorrt_llm.functional.relu(inter)
self.register_network_output('inter', inter)
output = self.proj(inter)
return output
class TestDebuggingAPI(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def test_debugging_api(self):
# test data
dtype = 'float32'
hidden_size = 768
x_data = torch.randn(2, 16, hidden_size)
tm = TorchMLP(hidden_size=hidden_size,
ffn_hidden_size=hidden_size * 4,
bias=False)
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
x = Tensor(name='x',
shape=x_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
gm = MLP(hidden_size=hidden_size,
ffn_hidden_size=4 * hidden_size,
bias=False)
gm.fc.weight.value = tm.fc.weight.detach().cpu().numpy()
gm.proj.weight.value = tm.proj.weight.detach().cpu().numpy()
output = gm.forward(x)
net._mark_output(output, 'output',
tensorrt_llm.str_dtype_to_trt(dtype))
for k, v in gm.named_network_outputs():
net._mark_output(v, k, tensorrt_llm.str_dtype_to_trt(dtype))
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={'x': x_data.numpy()})
# pytorch run
with torch.no_grad():
ref1, ref2 = tm(x_data)
# compare diff
np.testing.assert_allclose(ref1.cpu().numpy(),
outputs['output'],
atol=1e-5)
np.testing.assert_allclose(ref2.cpu().numpy(),
outputs['inter'],
atol=1e-5)