forked from xcmyz/FastSpeech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
36 lines (28 loc) · 1.09 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import os
from multiprocessing import cpu_count
from tqdm import tqdm
import hparams
from data import ljspeech
def preprocess_ljspeech(filename):
in_dir = filename
out_dir = "dataset"
if not os.path.exists(out_dir):
os.makedirs(out_dir, exist_ok=True)
metadata = ljspeech.build_from_path(
in_dir, out_dir, cpu_count(), tqdm=tqdm)
write_metadata(metadata, out_dir)
def write_metadata(metadata, out_dir):
with open(os.path.join(out_dir, 'train.txt'), 'w', encoding='utf-8') as f:
for m in metadata:
f.write('|'.join([str(x) for x in m]) + '\n')
frames = sum([m[1] for m in metadata])
hours = frames * hparams.frame_shift_ms / (3600 * 1000)
print('Wrote %d utterances, %d frames (%.2f hours)' %
(len(metadata), frames, hours))
print('Max input length: %d' % max(len(m[2]) for m in metadata))
print('Max output length: %d' % max(m[1] for m in metadata))
def main():
path = os.path.join("data", "LJSpeech-1.1")
preprocess_ljspeech(path)
if __name__ == "__main__":
main()