Skip to content

Latest commit

 

History

History
115 lines (93 loc) · 3.78 KB

DATA.md

File metadata and controls

115 lines (93 loc) · 3.78 KB

Dataset preparation

If you want to reproduce the results in the paper for benchmark evaluation and training, you will need to setup dataset.

COCO

  • Download the images (2017 Train, 2017 Val, 2017 Test) from coco website.

  • Download annotation files (2017 train/val and test image info) from coco website.

  • Place the data (or create symlinks) to make the data folder like:

    ${CenterNet_ROOT}
    |-- data
    `-- |-- coco
        `-- |-- annotations
            |   |-- instances_train2017.json
            |   |-- instances_val2017.json
            |   |-- person_keypoints_train2017.json
            |   |-- person_keypoints_val2017.json
            |   |-- image_info_test-dev2017.json
            |---|-- train2017
            |---|-- val2017
            `---|-- test2017
    
  • [Optional] If you want to train ExtremeNet, generate extreme point annotation from segmentation:

    cd $CenterNet_ROOT/tools/
    python gen_coco_extreme_points.py
    

    It generates instances_extreme_train2017.json and instances_extreme_val2017.json in data/coco/annotations/.

Pascal VOC

  • Run

    cd $CenterNet_ROOT/tools/
    bash get_pascal_voc.sh
    
  • The above script includes:

    • Download, unzip, and move Pascal VOC images from the VOC website.
    • Download Pascal VOC annotation in COCO format (from Detectron).
    • Combine train/val 2007/2012 annotation files into a single json.
  • Move the created voc folder to data (or create symlinks) to make the data folder like:

    ${CenterNet_ROOT}
    |-- data
    `-- |-- voc
        `-- |-- annotations
            |   |-- pascal_trainval0712.json
            |   |-- pascal_test2017.json
            |-- images
            |   |-- 000001.jpg
            |   ......
            `-- VOCdevkit
    
    

    The VOCdevkit folder is needed to run the evaluation script from faster rcnn.

KITTI

  • Download images, annotations, and calibrations from KITTI website and unzip.

  • Download the train-val split of 3DOP and SubCNN and place the data as below

    ${CenterNet_ROOT}
    |-- data
    `-- |-- kitti
        `-- |-- training
            |   |-- image_2
            |   |-- label_2
            |   |-- calib
            |-- ImageSets_3dop
            |   |-- test.txt
            |   |-- train.txt
            |   |-- val.txt
            |   |-- trainval.txt
            `-- ImageSets_subcnn
                |-- test.txt
                |-- train.txt
                |-- val.txt
                |-- trainval.txt
    
  • Run python convert_kitti_to_coco.py in tools to convert the annotation into COCO format. You can set DEBUG=True in line 5 to visualize the annotation.

  • Link image folder

    cd ${CenterNet_ROOT}/data/kitti/
    mkdir images
    ln -s training/image_2 images/trainval
    
  • The data structure should look like:

    ${CenterNet_ROOT}
    |-- data
    `-- |-- kitti
        `-- |-- annotations
            |   |-- kitti_3dop_train.json
            |   |-- kitti_3dop_val.json
            |   |-- kitti_subcnn_train.json
            |   |-- kitti_subcnn_val.json
            `-- images
                |-- trainval
                |-- test