-
Notifications
You must be signed in to change notification settings - Fork 281
/
generate_tag_des_llm.py
68 lines (49 loc) · 1.98 KB
/
generate_tag_des_llm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import openai
import json
from tqdm import tqdm
import argparse
from ram.utils.openset_utils import openimages_rare_unseen
parser = argparse.ArgumentParser(
description='Generate LLM tag descriptions for RAM++ open-set recognition')
parser.add_argument('--openai_api_key',
default='sk-xxxxx')
parser.add_argument('--output_file_path',
help='save path of llm tag descriptions',
default='datasets/openimages_rare_200/openimages_rare_200_llm_tag_descriptions.json')
def analyze_tags(tag):
# Generate LLM tag descriptions
llm_prompts = [ f"Describe concisely what a(n) {tag} looks like:", \
f"How can you identify a(n) {tag} concisely?", \
f"What does a(n) {tag} look like concisely?",\
f"What are the identifying characteristics of a(n) {tag}:", \
f"Please provide a concise description of the visual characteristics of {tag}:"]
results = {}
result_lines = []
result_lines.append(f"a photo of a {tag}.")
for llm_prompt in tqdm(llm_prompts):
# send message
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "assistant", "content": llm_prompt}],
max_tokens=77,
temperature=0.99,
n=10,
stop=None
)
# parse the response
for item in response.choices:
result_lines.append(item.message['content'].strip())
results[tag] = result_lines
return results
if __name__ == "__main__":
args = parser.parse_args()
# set OpenAI API key
openai.api_key = args.openai_api_key
categories = openimages_rare_unseen
tag_descriptions = []
for tag in categories:
result = analyze_tags(tag)
tag_descriptions.append(result)
output_file_path = args.output_file_path
with open(output_file_path, 'w') as w:
json.dump(tag_descriptions, w, indent=3)