forked from jwallen/RMG-database
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kineticsTraining.py
485 lines (399 loc) · 16.9 KB
/
kineticsTraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
#!/usr/bin/env python
# encoding: utf-8
"""
This script can be used to generate the "best fit" high-pressure limit kinetics
to a set of input kinetics.
To simply generate the best-fit kinetics, use the command ::
$ python kineticsTraining.py generate <family> <index>
where <family> is the name of the reaction family and <index> is the index of
the reaction to generate the recommended kinetics for. To also generate a plot
of the best-fit kinetics, use the command ::
$ python kineticsTraining.py evaluate <family> <index>
"""
import os.path
import math
import numpy
import matplotlib
matplotlib.rc('mathtext', fontset='stixsans', default='regular')
import pylab
from rmgpy.quantity import Quantity, constants
from rmgpy.thermo import *
from rmgpy.kinetics import *
from rmgpy.data.reference import *
from rmgpy.data.base import Entry
from rmgpy.data.thermo import ThermoDatabase
from rmgpy.data.kinetics import saveEntry
from rmgpy.molecule import Molecule
from rmgpy.species import Species
from rmgpy.reaction import Reaction
################################################################################
class ArgumentError(Exception):
"""
An exception raised when the command-line arguments given to the script are
invalid. Pass a string describing why the arguments are invalid.
"""
pass
################################################################################
forwardKinetics = []
reverseKinetics = []
forwardReaction = None
reverseReaction = None
forwardWeights = []
reverseWeights = []
def loadSpecies(adjlist):
species = Species().fromAdjacencyList(adjlist)
species.molecule = species.molecule[0].generateResonanceIsomers()
species.thermo = getThermoData(species)
species.molecule = [Molecule().fromAdjacencyList(adjlist)]
return species
def reaction(index, label, reactant1, product1, forwardDegeneracy=1, reverseDegeneracy=1, reactant2=None, product2=None, product3=None):
global forwardReaction, reverseReaction
reactants = [loadSpecies(reactant1)]
if reactant2:
reactants.append(loadSpecies(reactant2))
products = [loadSpecies(product1)]
if product2:
products.append(loadSpecies(product2))
if product3:
reactants.append(loadSpecies(product3))
forwardReaction = Reaction(reactants=reactants, products=products, degeneracy=forwardDegeneracy)
reverseReaction = Reaction(reactants=products, products=reactants, degeneracy=reverseDegeneracy)
def entry(forward, kinetics, reference, referenceType, shortDesc, longDesc, weight=1.0):
global forwardKinetics, reverseKinetics
referenceTypes = {'theory': 'T', 'experiment': 'E', 'review': 'R'}
try:
comment = referenceTypes[referenceType] + '/'
except KeyError:
comment = ''
author = reference.authors[0].split()
if author[-1] == 'Jr.':
author = author[-2][:-1]
else:
author = author[-1]
comment += '{0!s}/{1!s}'.format(reference.year, author)
kinetics.comment = comment
if forward:
forwardKinetics.append(kinetics)
forwardWeights.append(weight)
else:
reverseKinetics.append(kinetics)
reverseWeights.append(weight)
def loadKinetics(path):
"""
Load a set of kinetics data from the file located at `path` on disk.
"""
global forwardKinetics, reverseKinetics
global forwardReaction, reverseReaction
global forwardWeights, reverseWeights
print 'Loading kinetics from {0}...'.format(os.path.relpath(path))
forwardKinetics = []
reverseKinetics = []
forwardReaction = None
reverseReaction = None
forwardWeights = []
reverseWeights = []
# Set up global and local context
global_context = {
'__builtins__': None,
'True': True,
'False': False,
'forwardKinetics': [],
'reverseKinetics': [],
'forwardWeights': [],
'reverseWeights': [],
'forwardReaction': None,
'reverseReaction': None,
}
local_context = {
'__builtins__': None,
# Function prototypes
'reaction': reaction,
'entry': entry,
# Constants
'R': constants.R,
'kB': constants.kB,
# Kinetics types
'KineticsData': KineticsData,
'Arrhenius': Arrhenius,
'ArrheniusEP': ArrheniusEP,
'MultiKinetics': MultiKinetics,
'PDepArrhenius': PDepArrhenius,
'Chebyshev': Chebyshev,
'ThirdBody': ThirdBody,
'Lindemann': Lindemann,
'Troe': Troe,
# Reference types
'Reference': Reference,
'Article': Article,
'Book': Book,
'Thesis': Thesis,
}
# Process the file
f = open(path, 'r')
exec f in global_context, local_context
f.close()
# For each kinetics entry in reverseKinetics, fit the reverse kinetics and
# append it to forwardKinetics
for kinetics0, weight in zip(reverseKinetics, reverseWeights):
reverseReaction.kinetics = kinetics0
try:
kinetics = reverseReaction.generateReverseRateCoefficient()
except IndexError:
continue
kinetics.Tmin = kinetics0.Tmin
kinetics.Tmax = kinetics0.Tmax
kinetics.comment = kinetics0.comment + '*'
forwardKinetics.append(kinetics)
forwardWeights.append(weight)
return forwardKinetics, reverseKinetics, forwardWeights, reverseWeights
################################################################################
thermoDatabase = None
def loadThermoDatabase(path):
"""
Load the RMG thermodynamics database from `path`.
"""
global thermoDatabase
print 'Loading thermodynamics database...'
thermoDatabase = ThermoDatabase()
thermoDatabase.load(path)
def getThermoData(species):
global thermoDatabase
# Ensure molecules are using explicit hydrogens
implicitH = [mol.implicitHydrogens for mol in species.molecule]
for molecule in species.molecule:
molecule.makeHydrogensExplicit()
thermo = []
for molecule in species.molecule:
molecule.clearLabeledAtoms()
molecule.updateAtomTypes()
thermo.append(thermoDatabase.getThermoData(species))
H298 = numpy.array([t.getEnthalpy(298.) for t in thermo])
indices = H298.argsort()
# If multiple resonance isomers are present, use the thermo data of
# the most stable isomer (i.e. one with lowest enthalpy of formation)
# as the thermo data of the species
thermo0 = thermo[indices[0]]
# Sort the structures in order of decreasing stability
species.molecule = [species.molecule[ind] for ind in indices]
implicitH = [implicitH[ind] for ind in indices]
# Convert to Wilhoit
if isinstance(thermo0, Wilhoit):
wilhoit = thermo0
else:
linear = species.molecule[0].isLinear()
nRotors = species.molecule[0].countInternalRotors()
nFreq = 3 * len(species.molecule[0].atoms) - (5 if linear else 6) - nRotors
wilhoit = convertThermoModel(thermo0, Wilhoit, linear=linear, nFreq=nFreq, nRotors=nRotors)
# Restore implicit hydrogens if necessary
for implicit, molecule in zip(implicitH, species.molecule):
if implicit: molecule.makeHydrogensImplicit()
return wilhoit
################################################################################
def fitArrhenius(kineticsList, weights, Tlist, Tmin, Tmax):
"""
Fit a modified Arrhenius expression to the set of loaded kinetics
`kineticsList` using the given array of temperatures `Tlist` in K. The
`Tmin` and `Tmax` parameters specify the limits in K at which the fitted
kinetics should be said to be valid. Returns the best-fit kinetics and the
confidence interval (on a log scale).
"""
import scipy.stats
Tdata = []; kdata = []; wdata = []
print 'Fitting modified Arrhenius kinetics...'
for kinetics, weight in zip(kineticsList, weights):
for n in range(len(Tlist)):
if kinetics.isTemperatureValid(Tlist[n]):
Tdata.append(Tlist[n])
kdata.append(kinetics.getRateCoefficient(Tlist[n]))
wdata.append(weight)
Tdata = numpy.array(Tdata, numpy.float)
kdata = numpy.array(kdata, numpy.float)
wdata = numpy.array(wdata, numpy.float)
arrhenius = Arrhenius().fitToData(Tdata, kdata, kunits='m^3/(mol*s)', T0=300, weights=wdata)
# Compute RMS error and confidence interval
count = len(kdata)
rmsError = 0
for T, k in zip(Tdata, kdata):
rmsError += (math.log10(k) - math.log10(arrhenius.getRateCoefficient(T)))**2
rmsError = math.sqrt(rmsError / (count - 3))
ci = scipy.stats.t.ppf(0.975, count - 3) * rmsError
# Adjust units of best-fit Arrhenius expression
arrhenius.A.units = 'cm^3/(mol*s)' if len(forwardReaction.reactants) == 2 else 's^-1'
arrhenius.Ea.units = 'kJ/mol'
# Set Tmin and Tmax of best-fit Arrhenius expression
arrhenius.Tmin = Quantity(Tmin,"K")
arrhenius.Tmax = Quantity(Tmax,"K")
return arrhenius, ci
################################################################################
def plotKinetics(kineticsList, Tlist, filename=None, bestKinetics=None):
"""
Plot the set of loaded kinetics `kineticsList` at the array of temperatures
`Tlist` in K. Different symbols denote the various reference types, while
different linespecs denote individual kinetics within each reference type.
If given, the `bestKinetics` will also be plotted, using a thicker line to
make it stand out.
"""
sm = pylab.cm.ScalarMappable(
norm = matplotlib.colors.Normalize(vmin=0, vmax=len(kineticsList)-1),
cmap = pylab.get_cmap('jet'),
)
if len(forwardReaction.reactants) == 2:
kfactor = 1e6; kunits = '$cm^3/mol*s$'
else:
kfactor = 1; kunits = '$s^-1$'
fig = pylab.figure(figsize=(8,6))
legend = []; lines = []
for index, kinetics in enumerate(kineticsList):
klist = numpy.zeros_like(Tlist)
for n in range(len(Tlist)):
if kinetics.isTemperatureValid(Tlist[n]):
klist[n] = kinetics.getRateCoefficient(Tlist[n])
try:
if kinetics.comment[0] == 'R':
linespec = '-'
elif kinetics.comment[0] == 'E':
linespec = ':'
elif kinetics.comment[0] == 'T':
linespec = '--'
else:
linespec = '-.'
except IndexError:
continue
color = sm.to_rgba(index)
if numpy.any(klist):
lines.append(pylab.semilogy(1000. / Tlist, klist * kfactor, linespec, color=color, picker=5)[0])
legend.append(kinetics.comment)
if bestKinetics:
klist = numpy.zeros_like(Tlist)
for n in range(len(Tlist)):
if bestKinetics.isTemperatureValid(Tlist[n]):
klist[n] = bestKinetics.getRateCoefficient(Tlist[n])
if numpy.any(klist):
pylab.semilogy(1000. / Tlist, klist * kfactor, '-k', linewidth=3)
legend.append(bestKinetics.comment)
pylab.xlabel('1000 / (Temperature (K))')
pylab.ylabel('Rate coefficient ({0})'.format(kunits))
pylab.xlim(0.0,4.0)
pylab.legend(legend, loc=1)
pylab.title('{0} $\\rightarrow$ {1}'.format(
' + '.join([spec.label for spec in forwardReaction.reactants]),
' + '.join([spec.label for spec in forwardReaction.products]),
))
if filename:
pylab.savefig(filename)
def onpick(event):
index = lines.index(event.artist)
kinetics = kineticsList[index]
print kinetics.comment
print kinetics
connection_id = fig.canvas.mpl_connect('pick_event', onpick)
pylab.show()
################################################################################
def generateEntry(reaction, kinetics, index, ci):
"""
Return a string containing the reaction and its recommended kinetics in a
format suitable for putting in the training set.
"""
import StringIO
longDesc = ""
entry = Entry(
index = index,
item = forwardReaction,
data = kinetics,
reference = None,
referenceType = "review",
shortDesc = "Recommended value based on evaluation of {0:d} kinetics entries. log(CI) = {1:.3f}".format(len(forwardKinetics), ci),
longDesc = longDesc,
)
f = StringIO.StringIO()
saveEntry(f, entry)
string = f.getvalue()
f.close()
return string
################################################################################
Tlist_fit = 1000.0/numpy.arange(0.5, 3.34, 0.01, numpy.float)
Tlist_plot = 1000.0/numpy.arange(0.5, 3.34, 0.1, numpy.float)
Tmin = 300
Tmax = 2000
def getPath(family, index):
return os.path.join(os.path.dirname(os.path.abspath(__file__)), 'input', 'kinetics', 'families', family, 'training', '{0}.py'.format(index))
def generate(args):
"""
Generate the recommended kinetics for a reaction.
"""
family = str(args.family[0])
for index in args.index:
index = int(index)
path = getPath(args.family[0], str(index))
forwardKinetics, reverseKinetics, forwardWeights, reverseWeights = loadKinetics(path)
kinetics, ci = fitArrhenius(forwardKinetics, forwardWeights, Tlist_fit, Tmin, Tmax)
kinetics.comment = 'Best fit'
print
print generateEntry(forwardReaction, kinetics, index, ci)
def evaluate(args):
"""
Evaluate the collected kinetics for a given reaction.
"""
family = str(args.family[0])
for index in args.index:
index = int(index)
path = getPath(args.family[0], str(index))
forwardKinetics, reverseKinetics, forwardWeights, reverseWeights = loadKinetics(path)
done = False
while not done:
kinetics, ci = fitArrhenius(forwardKinetics, forwardWeights, Tlist_fit, Tmin, Tmax)
kinetics.comment = 'Best fit'
Tlist = Tlist_fit
klist = numpy.zeros_like(Tlist)
for n in range(len(Tlist)):
if kinetics.isTemperatureValid(Tlist[n]):
klist[n] = kinetics.getRateCoefficient(Tlist[n])
done = True; outlier = None; outlierRMS = 0
for kinetics0 in forwardKinetics:
klist0 = numpy.zeros_like(Tlist)
rms = 0; count = 0
for n in range(len(Tlist)):
if kinetics0.isTemperatureValid(Tlist[n]):
klist0[n] = kinetics0.getRateCoefficient(Tlist[n])
error = math.log10(klist0[n]) - math.log10(klist[n])
rms += error * error
count += 1
if count == 0: continue
rms = math.sqrt(rms / count)
if rms > 3.0 and rms > outlierRMS:
outlier = kinetics0
outlierRMS = rms
if outlier is not None:
forwardKinetics.remove(outlier)
print 'Identified kinetics "{0}" as outlier (RMS = {1:g}). Removing it from Arrhenius fit.'.format(outlier.comment, outlierRMS)
done = False
plotKinetics(forwardKinetics, Tlist_plot, filename='{0}.pdf'.format(path[:-3]), bestKinetics=kinetics)
print
print generateEntry(forwardReaction, kinetics, index, ci)
################################################################################
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest='command', help='')
# generate <index> - generate the recommended kinetics for a given reaction
generateParser = subparsers.add_parser('generate', help='generate the recommended kinetics for a given reaction')
generateParser.add_argument('family', type=str, nargs=1, help='the reaction family containing the reaction')
generateParser.add_argument('index', type=str, nargs='+', help='the index of the reaction')
generateParser.set_defaults(run=generate)
# evaluate <index> - evaluate the collected kinetics for a given reaction
evaluateParser = subparsers.add_parser('evaluate', help='evaluate the collected kinetics for a given reaction')
evaluateParser.add_argument('family', type=str, nargs=1, help='the reaction family containing the reaction')
evaluateParser.add_argument('index', metavar='<index>', type=str, nargs='+', help='the index of the reaction')
evaluateParser.set_defaults(run=evaluate)
args = parser.parse_args()
loadThermoDatabase(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'input', 'thermo'))
try:
args.run(args)
except ArgumentError, e:
for choice, subparser in subparsers.choices.iteritems():
if args.command == choice:
subparser.print_help()
break
else:
parser.print_help()
print 'ArgumentError: {0}'.format(e)