-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
83 lines (64 loc) · 2.64 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import os
import numpy as np
from PIL import Image
import csv
import keras
from keras.models import Sequential
from keras.layers import Conv2D, MaxPool2D, Flatten, Dropout, Dense
from keras.losses import categorical_crossentropy
from keras.optimizers import Adadelta
from tools import word2label
def get_images_list(path):
return [os.path.join(path, f) for f in os.listdir(path) if f.endswith('.bmp')]
def load_data():
train_list = get_images_list('.\\train')
test_list = get_images_list('.\\test')
train_len = len(train_list)
test_len = len(test_list)
X_train = np.empty((train_len, 20, 20))
X_test = np.empty((test_len, 20, 20))
for i in range(train_len):
img = Image.open(train_list[i]) # 打开图像
X_train[i] = np.asarray(img, dtype='float64') / 256 # 将图像转化为数组并将像素转化到0-1之间
X_train = X_train.reshape(-1, 20, 20, 1)
for i in range(test_len):
img = Image.open(test_list[i]) # 打开图像
X_test[i] = np.asarray(img, dtype='float64') / 256 # 将图像转化为数组并将像素转化到0-1之间
X_test = X_test.reshape(-1, 20, 20, 1)
with open('.\\train\\data.csv', 'r', encoding='utf-8') as f:
reader = csv.reader(f)
Y_train = [row[1] for row in reader]
with open('.\\test\\data.csv', 'r', encoding='utf-8') as f:
reader = csv.reader(f)
Y_test = [row[1] for row in reader]
return X_train, X_test, Y_train, Y_test
def train(X_train, X_test, Y_train, Y_test):
for i in range(len(Y_train)):
Y_train[i] = word2label(Y_train[i])
for i in range(len(Y_test)):
Y_test[i] = word2label(Y_test[i])
Y_train = keras.utils.to_categorical(Y_train, 28)
Y_test = keras.utils.to_categorical(Y_test, 28)
model = Sequential()
model.add(Conv2D(32, (4, 4), activation='relu', input_shape=[20, 20, 1]))
model.add(Conv2D(64, (4, 4), activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(28, activation='softmax'))
model.compile(loss=categorical_crossentropy,
optimizer=Adadelta(),
metrics=['accuracy'])
batch_size = 100
epochs = 50
model.fit(X_train, Y_train,
batch_size=batch_size,
epochs=epochs)
loss, accuracy = model.evaluate(X_test, Y_test, verbose=1)
print('loss:%.4f accuracy:%.4f' % (loss, accuracy))
model.save('Veri.h5')
if __name__ == '__main__':
X_train, X_test, Y_train, Y_test = load_data()
train(X_train, X_test, Y_train, Y_test)