-
Notifications
You must be signed in to change notification settings - Fork 142
/
zscore.py
218 lines (191 loc) · 8.98 KB
/
zscore.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Mon Jan 15 16:23:45 2018
@author: hxj
"""
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 9 20:32:28 2018
@author: hxj
"""
import wave
import numpy as np
import python_speech_features as ps
import os
import glob
import cPickle
#import base
#import sigproc
eps = 1e-5
def wgn(x, snr):
snr = 10**(snr/10.0)
xpower = np.sum(x**2)/len(x)
npower = xpower / snr
return np.random.randn(len(x)) * np.sqrt(npower)
def getlogspec(signal,samplerate=16000,winlen=0.02,winstep=0.01,
nfilt=26,nfft=399,lowfreq=0,highfreq=None,preemph=0.97,
winfunc=lambda x:np.ones((x,))):
highfreq= highfreq or samplerate/2
signal = ps.sigproc.preemphasis(signal,preemph)
frames = ps.sigproc.framesig(signal, winlen*samplerate, winstep*samplerate, winfunc)
pspec = ps.sigproc.logpowspec(frames,nfft)
return pspec
def read_file(filename):
file = wave.open(filename,'r')
params = file.getparams()
nchannels, sampwidth, framerate, wav_length = params[:4]
str_data = file.readframes(wav_length)
wavedata = np.fromstring(str_data, dtype = np.short)
#wavedata = np.float(wavedata*1.0/max(abs(wavedata))) # normalization)
time = np.arange(0,wav_length) * (1.0/framerate)
file.close()
return wavedata, time, framerate
def dense_to_one_hot(labels_dense, num_classes):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = np.arange(num_labels) * num_classes
labels_one_hot = np.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def zscore(data,mean,std):
shape = np.array(data.shape,dtype = np.int32)
for i in range(shape[0]):
data[i,:,:,0] = (data[i,:,:,0]-mean)/(std)
return data
def normalization(data):
'''
#apply zscore
mean = np.mean(data,axis=0)#axis=0纵轴方向求均值
std = np.std(data,axis=0)
train_data = zscore(train_data,mean,std)
test_data = zscore(test_data,mean,std)
'''
mean = np.mean(data,axis=0)#axis=0纵轴方向求均值
std = np.std(data,axis=0)
data = (data-mean)/std
return data
def mapminmax(data):
shape = np.array(data.shape,dtype = np.int32)
for i in range(shape[0]):
min = np.min(data[i,:,:,0])
max = np.max(data[i,:,:,0])
data[i,:,:,0] = (data[i,:,:,0] - min)/((max - min)+eps)
return data
def generate_label(emotion,classnum):
label = -1
if(emotion == 'ang'):
label = 0
elif(emotion == 'sad'):
label = 1
elif(emotion == 'hap'):
label = 2
elif(emotion == 'neu'):
label = 3
elif(emotion == 'fear'):
label = 4
else:
label = 5
return label
def read_IEMOCAP():
train_num = 2928
filter_num = 40
rootdir = '/home/jamhan/hxj/datasets/IEMOCAP_full_release'
traindata1 = np.empty((train_num*300,filter_num),dtype=np.float32)
traindata2 = np.empty((train_num*300,filter_num),dtype=np.float32)
traindata3 = np.empty((train_num*300,filter_num),dtype=np.float32)
train_num = 0
for speaker in os.listdir(rootdir):
if(speaker[0] == 'S'):
sub_dir = os.path.join(rootdir,speaker,'sentences/wav')
emoevl = os.path.join(rootdir,speaker,'dialog/EmoEvaluation')
for sess in os.listdir(sub_dir):
if(sess[7] == 'i'):
emotdir = emoevl+'/'+sess+'.txt'
#emotfile = open(emotdir)
emot_map = {}
with open(emotdir,'r') as emot_to_read:
while True:
line = emot_to_read.readline()
if not line:
break
if(line[0] == '['):
t = line.split()
emot_map[t[3]] = t[4]
file_dir = os.path.join(sub_dir, sess, '*.wav')
files = glob.glob(file_dir)
for filename in files:
#wavname = filename[-23:-4]
wavname = filename.split("/")[-1][:-4]
emotion = emot_map[wavname]
if(emotion in ['hap','ang','neu','sad']):
data, time, rate = read_file(filename)
mel_spec = ps.logfbank(data,rate,nfilt = filter_num)
delta1 = ps.delta(mel_spec, 2)
delta2 = ps.delta(delta1, 2)
time = mel_spec.shape[0]
if(speaker in ['Session1','Session2','Session3','Session4']):
#training set
if(time <= 300):
part = mel_spec
delta11 = delta1
delta21 = delta2
part = np.pad(part,((0,300 - part.shape[0]),(0,0)),'constant',constant_values = 0)
delta11 = np.pad(delta11,((0,300 - delta11.shape[0]),(0,0)),'constant',constant_values = 0)
delta21 = np.pad(delta21,((0,300 - delta21.shape[0]),(0,0)),'constant',constant_values = 0)
traindata1[train_num*300:(train_num+1)*300] = part
traindata2[train_num*300:(train_num+1)*300] = delta11
traindata3[train_num*300:(train_num+1)*300] = delta21
em = generate_label(emotion,6)
train_num = train_num + 1
else:
if(emotion in ['ang','neu','sad']):
for i in range(2):
if(i == 0):
begin = 0
end = begin + 300
else:
begin = time - 300
end = time
part = mel_spec[begin:end,:]
delta11 = delta1[begin:end,:]
delta21 = delta2[begin:end,:]
traindata1[train_num*300:(train_num+1)*300] = part
traindata2[train_num*300:(train_num+1)*300] = delta11
traindata3[train_num*300:(train_num+1)*300] = delta21
train_num = train_num + 1
else:
frames = divmod(time-300,100)[0] + 1
for i in range(frames):
begin = 100*i
end = begin + 300
part = mel_spec[begin:end,:]
delta11 = delta1[begin:end,:]
delta21 = delta2[begin:end,:]
traindata1[train_num*300:(train_num+1)*300] = part
traindata2[train_num*300:(train_num+1)*300] = delta11
traindata3[train_num*300:(train_num+1)*300] = delta21
train_num = train_num + 1
else:
pass
else:
pass
mean1 = np.mean(traindata1,axis=0)#axis=0纵轴方向求均值
std1 = np.std(traindata1,axis=0)
mean2 = np.mean(traindata2,axis=0)#axis=0纵轴方向求均值
std2 = np.std(traindata2,axis=0)
mean3 = np.mean(traindata3,axis=0)#axis=0纵轴方向求均值
std3 = np.std(traindata3,axis=0)
output = './zscore'+str(filter_num)+'.pkl'
#output = './IEMOCAP'+str(m)+'_'+str(filter_num)+'.pkl'
f=open(output,'wb')
cPickle.dump((mean1,std1,mean2,std2,mean3,std3),f)
f.close()
return
if __name__=='__main__':
read_IEMOCAP()
#print "test_num:", test_num
#print "train_num:", train_num
# n = wgn(x, 6)
# xn = x+n # 增加了6dBz信噪比噪声的信号