forked from CoinCheung/pytorch-loss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathone_hot.py
88 lines (71 loc) · 2.64 KB
/
one_hot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import torch
import torch.nn as nn
import torch.nn.functional as F
def convert_to_one_hot(x, minleng, ignore_idx=-1):
'''
encode input x into one hot
inputs:
x: tensor of shape (N, ...) with type long
minleng: minimum length of one hot code, this should be larger than max value in x
ignore_idx: the index in x that should be ignored, default is 255
return:
tensor of shape (N, minleng, ...) with type float
'''
device = x.device
# compute output shape
size = list(x.size())
size.insert(1, minleng)
assert x[x != ignore_idx].max() < minleng, "minleng should larger than max value in x"
if ignore_idx < 0:
out = torch.zeros(size, device=device).scatter_(1, x.unsqueeze(1), 1)
else:
# overcome ignore index
with torch.no_grad():
x = x.clone().detach()
ignore = x == ignore_idx
x[ignore] = 0
out = torch.zeros(size, device=device).scatter_(1, x.unsqueeze(1), 1)
ignore = ignore.nonzero(as_tuple=False)
_, M = ignore.size()
a, *b = ignore.chunk(M, dim=1)
out[[a, torch.arange(minleng), *b]] = 0
return out
def convert_to_one_hot_cu(x, minleng, smooth=0., ignore_idx=-1):
'''
cuda version of encoding x into one hot, the difference from above is that, this support label smooth.
inputs:
x: tensor of shape (N, ...) with type long
minleng: minimum length of one hot code, this should be larger than max value in x
smooth: sets positive to **1. - smooth**, while sets negative to **smooth / minleng**
ignore_idx: the index in x that should be ignored, default is 255
return:
tensor of shape (N, minleng, ...) with type float32
'''
import one_hot_cpp
return one_hot_cpp.label_one_hot(x, ignore_idx, smooth, minleng)
class OnehotEncoder(nn.Module):
def __init__(
self,
n_classes,
lb_smooth=0.,
ignore_idx=-1,
):
super(OnehotEncoder, self).__init__()
self.n_classes = n_classes
self.lb_smooth = lb_smooth
self.ignore_idx = ignore_idx
@ torch.no_grad()
def forward(self, label):
return convert_to_one_hot_cu(
label, self.n_classes, self.lb_smooth, self.ignore_idx).detach()
if __name__ == "__main__":
x = torch.randint(0, 3, (3, 4))
print(x)
x[1, 1] = 4
print(x)
out = convert_to_one_hot(x, minleng=4, ignore_idx=4)
print(out)
x = torch.randint(0, 3, (3, 4)).cuda()
smooth = 0.1
out = convert_to_one_hot_cu(x, minleng=4, smooth=smooth, ignore_idx=4)
print(out)