-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
133 lines (105 loc) · 4.11 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from dotenv import load_dotenv
import os
from PyPDF2 import PdfReader
from langchain.llms import LlamaCpp
import streamlit as st
from langchain.text_splitter import CharacterTextSplitter
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
from langchain.callbacks import get_openai_callback
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from pdf2image import convert_from_path, convert_from_bytes
import tempfile
from langchain.schema import Document
from baidu_trans import *
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
# Load environment variables
load_dotenv()
def image_to_base64(image):
import base64
import io
buffered = io.BytesIO()
image.save(buffered, format="PNG")
image_base64 = base64.b64encode(buffered.getvalue()).decode()
return image_base64
def pdf_to_images(file_bytes):
with tempfile.TemporaryDirectory() as temp_dir:
# 将上传的PDF文件转换为图像
images = convert_from_bytes(file_bytes, output_folder=temp_dir)
return images
def pdf_to_text(pdf_loader):
texts = []
text_str = ""
pdf_reader = PdfReader(pdf_loader)
for page in pdf_reader.pages:
text = page.extract_text()
texts.append(text)
text_str += text
return texts, text_str
def process_text(text):
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=2000, chunk_overlap=200, length_function=len
)
chunks = text_splitter.split_text(text)
# Convert the chunks of text into embeddings to form a knowledge base
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2"
)
knowledgeBase = FAISS.from_texts(chunks, embeddings)
return knowledgeBase
def main():
# 仅支持cpu,使用GPU请修改参数
llm = LlamaCpp(
model_path="your model path",
top_p=2,
n_ctx=5096,
# f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls
callback_manager=callback_manager,
verbose=True,
)
chain = load_qa_chain(llm, chain_type="stuff")
st.title("Chat with your PDF 💬")
global images, texts
images = None
texts = None
text_str = None
query = st.text_input("Ask a question to the PDF")
cancel_button = st.button("Cancel")
with st.sidebar:
uploaded_file = st.file_uploader("Upload your PDF Document", type="pdf")
if uploaded_file:
texts, text_str = pdf_to_text(uploaded_file)
images = convert_from_bytes(uploaded_file.getvalue())
# 在Streamlit中展示图像
for i, image in enumerate(images):
st.image(image, caption=f"第 {i + 1} 页", use_column_width=True)
if text_str:
knowledgeBase = process_text(text_str)
selected_image_index = st.selectbox("select specific page", range(len(images)))
genre = st.radio("结果是否翻译成中文?", options=["是", "否"])
if images:
print("selected_image_index", selected_image_index)
if cancel_button:
st.stop()
if st.button("执行"):
if selected_image_index > 0:
select_text = texts[selected_image_index - 1]
response = chain.run(
input_documents=[Document(page_content=select_text)],
question=query,
)
if genre == "是":
response = baidu_translate(response, app_id, secret_key)
st.write(response)
else:
docs = knowledgeBase.similarity_search(query)
response = chain.run(input_documents=docs, question=query)
if genre == "是":
response = baidu_translate(response, app_id, secret_key)
st.write(response)
if __name__ == "__main__":
main()