-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3dgs_robotarm.py
executable file
·429 lines (356 loc) · 20.2 KB
/
3dgs_robotarm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import threading
import time
import math
import torch
import numpy as np
from scipy.spatial.transform import Rotation as R
import dearpygui.dearpygui as dpg
import pybullet as p
import pybullet_data
import random
from argparse import ArgumentParser
is_2dgs = True
if is_2dgs:
from libinfer_2dgs.scene import Scene, GaussianModel
from libinfer_2dgs.scene.cameras import MiniCam
from libinfer_2dgs.arguments import ModelParams, PipelineParams, get_combined_args
from libinfer_2dgs.gaussian_renderer import render
from libinfer_2dgs.utils.graphics_utils import getProjectionMatrix
else:
from libinfer_3dgs import render
from libinfer_3dgs.gaussian_model import GaussianModel
from libinfer_3dgs.cameras import MiniCam
from libinfer_3dgs.scene import Scene
from libinfer_3dgs.utils.graphics_utils import getProjectionMatrix
from libinfer_3dgs.arguments import ModelParams, PipelineParams, get_combined_args
def compute_projection_matrix_fov(fovy, fovx, near_val, far_val):
y_scale = 1.0 / np.tan(fovy / 2)
x_scale = 1.0 / np.tan(fovx / 2)
projection_matrix = np.zeros((4, 4), dtype=np.float32)
projection_matrix[0, 0] = x_scale
projection_matrix[1, 1] = y_scale
projection_matrix[2, 2] = (near_val + far_val) / (near_val - far_val)
projection_matrix[2, 3] = -1
projection_matrix[3, 2] = (2 * far_val * near_val) / (near_val - far_val)
return projection_matrix
class KeyInputHandler:
def __init__(self):
self.yaw = 0.0
self.pitch = 0.0
self.roll = 0.0
self.x = 0.0
self.y = 0.0
self.z = 0.0
self.delta_x = 0.0
self.delta_y = 0.0
self.delta_z = 0.0
self.robot_yaw = 0.0
self.robot_pitch = 0.0
self.robot_roll = 0.0
self.lock = threading.Lock()
def set_euler_angles(self, yaw, pitch, roll):
with self.lock:
self.yaw = yaw
self.pitch = pitch
self.roll = roll
def get_euler_angles(self):
with self.lock:
return self.yaw, self.pitch, self.roll
def set_position(self, x, y, z):
with self.lock:
self.x = x
self.y = y
self.z = z
def get_position(self):
with self.lock:
return self.x, self.y, self.z
def update_deltas(self, delta_x, delta_y, delta_z):
with self.lock:
self.delta_x = delta_x
self.delta_y = delta_y
self.delta_z = delta_z
def get_deltas(self):
with self.lock:
return self.delta_x, self.delta_y, self.delta_z
def set_robot_euler_angles(self, yaw, pitch, roll):
with self.lock:
self.robot_yaw = yaw
self.robot_pitch = pitch
self.robot_roll = roll
def get_robot_euler_angles(self):
with self.lock:
return self.robot_yaw, self.robot_pitch, self.robot_roll
def kuka_camera(w, h, view_matrix, proj_matrix):
projection_matrix = tuple(proj_matrix.reshape(-1))
view_matrix = tuple(view_matrix.reshape(-1))
img = p.getCameraImage(w, h, view_matrix, projection_matrix)
return img
def main():
p.connect(p.GUI)
p.setAdditionalSearchPath(pybullet_data.getDataPath())
p.setGravity(0, 0, -9.8)
p.setTimeStep(1./50.)
p.setRealTimeSimulation(1)
eglPluginId = -1
import pkgutil
egl = pkgutil.get_loader('eglRenderer')
if (egl):
eglPluginId = p.loadPlugin(egl.get_filename(), "_eglRendererPlugin")
else:
eglPluginId = p.loadPlugin("eglRendererPlugin")
x_rebot = 0
y_rebot = 2.9
z_rebot = -0.65
start_pos = [x_rebot, y_rebot, z_rebot]
start_orientation = p.getQuaternionFromEuler([0, 0, 0])
#plane_id = p.loadURDF("plane.urdf", [x_rebot, y_rebot, -1.65])
#p.changeDynamics(plane_id, -1, restitution=1)
kuka_id = p.loadURDF("rm65/urdf/rm_65.urdf", start_pos, start_orientation, useFixedBase=True)
numJoints = p.getNumJoints(kuka_id)
key_input_handler = KeyInputHandler()
fovy = 1.1064156765004665
fovx = 1.6639937226014894
height = 540
width = 960
zfar = 100.0
znear = 0.01
adjust_matrix = np.array([
[-0.01396038, -0.51966003, -0.85425907],
[ 0.99977363, 0.00646452, -0.02027087],
[ 0.01605634, -0.85434868, 0.51945214],
])
projection_matrix_torch = getProjectionMatrix(znear=znear, zfar=zfar, fovX=fovx, fovY=fovy).transpose(0, 1).cuda()
projection_matrix_fov = compute_projection_matrix_fov(fovy=fovy, fovx=fovx, near_val=znear, far_val=zfar)
#------ create mesh for physical activity -----------------------------------------------
monastryId = concaveEnv = p.createCollisionShape(p.GEOM_MESH,
fileName="env_mesh_model/output_compressed.obj",
flags=p.GEOM_FORCE_CONCAVE_TRIMESH)
rotation = R.from_matrix(np.linalg.inv(adjust_matrix))
euler_angles = rotation.as_euler('xyz', degrees=False) # 使用xyz顺序得到欧拉角
euler_angles[1] += np.pi
adjusted_rotation = R.from_euler('xyz', euler_angles)
rotation_quaternion = adjusted_rotation.as_quat() # 返回格式为 [x, y, z, w]
# 将四元数转换为 PyBullet 格式 (x, y, z, w)
rotation_quaternion = [rotation_quaternion[0], rotation_quaternion[1], rotation_quaternion[2], rotation_quaternion[3]]
p.createMultiBody(0, monastryId, baseOrientation=rotation_quaternion)
#------------------------------------------------------------------------------------------
#---------------------------------------ball-----------------------------------------------
ball_radius = 0.1
collision_shape_id = p.createCollisionShape(shapeType=p.GEOM_SPHERE, radius=ball_radius)
visual_shape_id = p.createVisualShape(shapeType=p.GEOM_SPHERE, radius=ball_radius, rgbaColor=[1, 0, 0, 1]) # 红色
ball_id = p.createMultiBody(baseMass=0.1, baseCollisionShapeIndex=collision_shape_id,
baseVisualShapeIndex=visual_shape_id, basePosition=[x_rebot+0.5, y_rebot, z_rebot])
p.changeDynamics(ball_id, -1, mass=0.1,
restitution=0.6,
lateralFriction=1.5,
rollingFriction=1.5,
spinningFriction=1.5,
linearDamping=0.9,
angularDamping=0.9
)
#--------------------------------------------------------------------------------------------------
def generate_ball_event():
sphereRadius = 0.05
colSphereId = p.createCollisionShape(p.GEOM_SPHERE, radius=sphereRadius)
colBoxId = p.createCollisionShape(p.GEOM_BOX, halfExtents=[sphereRadius, sphereRadius, sphereRadius])
mass = 0.1
useMaximalCoordinates = 0
visualShapeId = p.createVisualShape(shapeType=p.GEOM_SPHERE, radius=sphereRadius, rgbaColor=[0, 1, 1, 1])
for i in range(5):
for j in range(5):
for k in range(5):
x = -i * 2 * sphereRadius + x_rebot
y = j * 2 * sphereRadius + y_rebot
z = k * 2 * sphereRadius + 1.0
if (k & 2):
sphereUid = p.createMultiBody(
mass,
colSphereId,
visualShapeId, [x, y, z],
useMaximalCoordinates=useMaximalCoordinates)
else:
sphereUid = p.createMultiBody(
mass,
colBoxId,
visualShapeId, [x, y, z],
useMaximalCoordinates=useMaximalCoordinates)
# 设置弹性和摩擦力
p.changeDynamics(
sphereUid,
-1,
restitution=0.95, # 设置弹性系数,1.0表示完全弹性碰撞
spinningFriction=0.001, # 旋转摩擦
rollingFriction=0.001, # 滚动摩擦
linearDamping=0.0 # 线性阻尼
)
time.sleep(0.1) # 控制球的创建速度
#--------------------------------------------------------------------------------------------------
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
args = get_combined_args(parser)
print("Rendering " + args.model_path)
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.set_device(torch.device("cuda:0"))
dataset = model.extract(args)
iteration = args.iteration
pipeline = pipeline.extract(args)
with torch.no_grad():
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
prev_time = time.time()
fps = 0
frame_count = 0
event_thread = threading.Thread(target=generate_ball_event)
def release_ball():
global constraint_id, attached
if attached:
p.removeConstraint(constraint_id)
#attached = False
print("Ball released!")
def update_image():
global constraint_id, attached
nonlocal prev_time, fps, frame_count
keys = p.getKeyboardEvents()
if p.B3G_SPACE in keys and keys[p.B3G_SPACE] & p.KEY_WAS_TRIGGERED:
event_thread.start()
#print(keys)
with torch.no_grad():
yaw, pitch, roll = key_input_handler.get_euler_angles()
x, y, z = key_input_handler.get_position()
delta_x, delta_y, delta_z = key_input_handler.get_deltas()
robot_yaw, robot_pitch, robot_roll = key_input_handler.get_robot_euler_angles()
target_orientation = p.getQuaternionFromEuler([math.radians(robot_yaw), math.radians(robot_pitch), math.radians(robot_roll)])
jointPoses = p.calculateInverseKinematics(kuka_id, 5, [x_rebot + delta_x, y_rebot + delta_y, z_rebot + delta_z], target_orientation)
for i in range(numJoints):
p.setJointMotorControl2(bodyIndex=kuka_id,
jointIndex=i,
controlMode=p.POSITION_CONTROL,
targetPosition=jointPoses[i],
targetVelocity=1,
force=1000,
positionGain=0.1,
velocityGain=1)
view_matrix = p.computeViewMatrixFromYawPitchRoll(cameraTargetPosition=[x, y, z], distance=1e-5, yaw=yaw, pitch=pitch, roll=roll, upAxisIndex=2)
view_matrix = np.array(view_matrix, np.float32).reshape(4,4)
view_matrix[0:3,:] = adjust_matrix@view_matrix[0:3,:]
world_view_transform = torch.tensor(view_matrix).cuda()
full_proj_transform = (world_view_transform.unsqueeze(0).bmm(projection_matrix_torch.unsqueeze(0))).squeeze(0)
custom_cam = MiniCam(width, height, fovy, fovx, znear, zfar, world_view_transform, full_proj_transform)
rendering = render(custom_cam, gaussians, pipeline, background)["render"]
img_buffer = rendering.permute(1, 2, 0).cpu().numpy()
view_matrix_rebot = p.computeViewMatrixFromYawPitchRoll(cameraTargetPosition=[x, -y, -z], distance=1e-5, yaw=-yaw, pitch=pitch, roll=-roll, upAxisIndex=2)
com_p, com_o, _, _, _, _ = p.getLinkState(kuka_id, 5, computeForwardKinematics=True)
rebot_cam_x, rebot_cam_y, rebot_cam_z = com_p
euler_angles = p.getEulerFromQuaternion(com_o)
rebot_cam_yaw = math.degrees(euler_angles[2])
rebot_cam_pitch = math.degrees(euler_angles[1])
rebot_cam_roll = math.degrees(euler_angles[0])
#original_cam_quaternion = p.getQuaternionFromEuler([rebot_cam_yaw, rebot_cam_pitch, rebot_cam_roll])
#difference = np.array(target_orientation) - np.array(com_o)
#print(f"Results Quaternion Difference: {difference}")
ball_pos, _ = p.getBasePositionAndOrientation(ball_id)
distance = ((com_p[0] - ball_pos[0]) ** 2 + (com_p[1] - ball_pos[1]) ** 2 + (com_p[2] - ball_pos[2]) ** 2) ** 0.5
#print(distance)
if distance < 0.24:
if not attached:
constraint_id = p.createConstraint(kuka_id, 5, ball_id, -1, p.JOINT_FIXED,
jointAxis=[0, 0, 0],
parentFramePosition=[0, 0, 0],
childFramePosition=[0, 0, 0])
attached = True
else:
attached = False
#view_matrix_rebot_cam = p.computeViewMatrixFromYawPitchRoll(cameraTargetPosition=[rebot_cam_x, -rebot_cam_y, -rebot_cam_z], distance=1e-5, yaw=-rebot_cam_roll+90, pitch=-rebot_cam_pitch+90, roll=rebot_cam_yaw, upAxisIndex=2)
view_matrix_rebot_cam = p.computeViewMatrixFromYawPitchRoll(cameraTargetPosition=[rebot_cam_x, -rebot_cam_y, -rebot_cam_z], distance=1e-5, yaw=-robot_roll+90, pitch=-robot_pitch+90, roll=robot_yaw, upAxisIndex=2) #debug
view_matrix_rebot_cam = np.array(view_matrix_rebot_cam,np.float32).reshape(4,4)
view_matrix_rebot_cam[0:3,:] = adjust_matrix@view_matrix_rebot_cam[0:3,:]
rebot_view_transform = torch.tensor(view_matrix_rebot_cam).cuda()
rebot_proj_transform = (rebot_view_transform.unsqueeze(0).bmm(projection_matrix_torch.unsqueeze(0))).squeeze(0)
rebot_cam = MiniCam(width, height, fovy, fovx, znear, zfar, rebot_view_transform, rebot_proj_transform)
rebot_view_rendering = render(rebot_cam, gaussians, pipeline, background)["render"]
rebot_view_img_buffer = rebot_view_rendering.permute(1, 2, 0).cpu().numpy()
img = kuka_camera(width, height, np.array(view_matrix_rebot, np.float32).reshape(4,4), projection_matrix_fov)
img_buffer_2 = np.array(img[2][:,:,:3], dtype=np.float32) / 255
mask = np.array((img[4] == 0)+(img[4] == 2)+ (img[4] >= 3), np.uint8)
#cv2.imwrite('test.jpg',np.array((img[4] == 0), np.uint8)*255) # 0 robot arm many items >=3 many items
mask_c3 = np.repeat(mask[..., np.newaxis], 3, 2)
img1_masked = np.where(mask_c3 == 0, img_buffer * 255, 0)
img2_masked = np.where(mask_c3 == 1, img_buffer_2 * 255, 0)
img_blend = img1_masked + img2_masked
dpg.set_value("rendered_image", rebot_view_img_buffer.reshape(-1))
dpg.set_value("rendered_robotarm", (img_blend / 255).reshape(-1))
dpg.set_value("euler_angles_text", f'FPS: {fps:.2f}, Yaw: {rebot_cam_yaw:.2f}, Pitch: {rebot_cam_pitch:.2f}, Roll: {rebot_cam_roll:.2f}')
frame_count += 1
current_time = time.time()
elapsed_time = current_time - prev_time
if elapsed_time >= 1.0:
fps = frame_count / elapsed_time
prev_time = current_time
frame_count = 0
p.stepSimulation()
def key_callback(sender, app_data):
if sender == "yaw_slider":
key_input_handler.set_euler_angles(app_data, key_input_handler.pitch, key_input_handler.roll)
elif sender == "pitch_slider":
key_input_handler.set_euler_angles(key_input_handler.yaw, app_data, key_input_handler.roll)
elif sender == "roll_slider":
key_input_handler.set_euler_angles(key_input_handler.yaw, key_input_handler.pitch, app_data)
elif sender == "x_slider":
key_input_handler.set_position(app_data, key_input_handler.y, key_input_handler.z)
elif sender == "y_slider":
key_input_handler.set_position(key_input_handler.x, app_data, key_input_handler.z)
elif sender == "z_slider":
key_input_handler.set_position(key_input_handler.x, key_input_handler.y, app_data)
elif sender == "delta_x_slider":
key_input_handler.update_deltas(app_data, key_input_handler.delta_y, key_input_handler.delta_z)
elif sender == "delta_y_slider":
key_input_handler.update_deltas(key_input_handler.delta_x, app_data, key_input_handler.delta_z)
elif sender == "delta_z_slider":
key_input_handler.update_deltas(key_input_handler.delta_x, key_input_handler.delta_y, app_data)
elif sender == "robot_yaw_slider":
key_input_handler.set_robot_euler_angles(app_data, key_input_handler.robot_pitch, key_input_handler.robot_roll)
elif sender == "robot_pitch_slider":
key_input_handler.set_robot_euler_angles(key_input_handler.robot_yaw, app_data, key_input_handler.robot_roll)
elif sender == "robot_roll_slider":
key_input_handler.set_robot_euler_angles(key_input_handler.robot_yaw, key_input_handler.robot_pitch, app_data)
dpg.create_context()
with dpg.texture_registry(show=False):
dpg.add_raw_texture(width, height, np.zeros((height, width, 3)), format=dpg.mvFormat_Float_rgb, tag="rendered_robotarm")
dpg.add_raw_texture(width, height, np.zeros((height, width, 3)), format=dpg.mvFormat_Float_rgb, tag="rendered_image")
with dpg.window(label="Main Window", width=1800, height=1200):
with dpg.group(horizontal=False):
with dpg.child_window(width=width, height=height*2):
dpg.add_image("rendered_image")
dpg.add_image("rendered_robotarm")
with dpg.child_window(width=600, height=300, pos=(width+10,10)):
dpg.add_text("FPS: 0.00 yaw: pitch: roll:", tag="euler_angles_text")
dpg.add_slider_float(label="Yaw", default_value=0, min_value=-180, max_value=180, tag="yaw_slider", callback=key_callback)
dpg.add_slider_float(label="Pitch", default_value=0, min_value=-180, max_value=180, tag="pitch_slider", callback=key_callback)
dpg.add_slider_float(label="Roll", default_value=0, min_value=-180, max_value=180, tag="roll_slider", callback=key_callback)
dpg.add_slider_float(label="X", default_value=0, min_value=-10, max_value=10, tag="x_slider", callback=key_callback)
dpg.add_slider_float(label="Y", default_value=0, min_value=-10, max_value=10, tag="y_slider", callback=key_callback)
dpg.add_slider_float(label="Z", default_value=0, min_value=-10, max_value=10, tag="z_slider", callback=key_callback)
with dpg.child_window(width=600, height=300, pos=(width+10,400)):
dpg.add_slider_float(label="Delta X", default_value=0, min_value=-1.5, max_value=1.5, width=500, tag="delta_x_slider", callback=key_callback)
dpg.add_slider_float(label="Delta Y", default_value=0, min_value=-1.5, max_value=1.5, width=500,tag="delta_y_slider", callback=key_callback)
dpg.add_slider_float(label="Delta Z", default_value=0, min_value=-1.5, max_value=1.5, width=500,tag="delta_z_slider", callback=key_callback)
dpg.add_slider_float(label="Robot Yaw", default_value=0, min_value=-180, max_value=180, tag="robot_yaw_slider", callback=key_callback)
dpg.add_slider_float(label="Robot Pitch", default_value=0, min_value=-180, max_value=180, tag="robot_pitch_slider", callback=key_callback)
dpg.add_slider_float(label="Robot Roll", default_value=0, min_value=-180, max_value=180, tag="robot_roll_slider", callback=key_callback)
dpg.add_button(label="Release Ball", callback=lambda: release_ball())
dpg.create_viewport(title='Render Viewer', width=width, height=height)
dpg.setup_dearpygui()
dpg.show_viewport()
while dpg.is_dearpygui_running():
update_image()
dpg.render_dearpygui_frame()
dpg.destroy_context()
p.disconnect()
if __name__ == "__main__":
main()