forked from LDLINGLINGLING/AutoPlan2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcpm_utils.py
131 lines (124 loc) · 5.16 KB
/
cpm_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import json
def save_cpm3_data(cpm3_data_path, cpm3_data):
# 将列表转换为 JSON 格式的字符串
json_str = json.dumps(cpm3_data, ensure_ascii=False, indent=4)
# 将 JSON 字符串保存到文件
with open(cpm3_data_path, "w", encoding="utf-8") as json_file:
json_file.write(json_str)
def switch_cpm_tool(tools):
format_tool = {
"type": "function",
"function": {
"name": "get_delivery_date",
"description": "Get the delivery date for a customer's order. Call this whenever you need to know the delivery date, for example when a customer asks 'Where is my package'",
"parameters": {
"type": "object",
"properties": {
"order_id": {
"type": "string",
"description": "The customer's order ID.",
}
},
"required": ["order_id"],
"additionalProperties": False,
},
},
}
cpm_tools = []
for tool in tools:
format_tool["function"]["name"] = tool["name_for_model"]
format_tool["function"]["description"] = tool["description_for_model"]
# format_tool['function']["parameters"]['properties']=
required_list = []
for param in tool["parameters"]:
"""param{
'name': 'weapon_query',
'description': '武器名称',
'scope':['直升机','坦克','反坦克导弹','直升机','火箭炮','所有武器'],
'required': True,
'schema': {'type': 'string'},
}"""
format_tool["function"]["parameters"]["properties"][param["name"]] = {
"type": param["schema"]["type"],
"description": param["description"],
}
if param["required"]:
required_list.append(param["name"])
format_tool["function"]["parameters"]["required"] = required_list
format_tool["function"]["parameters"]["additionalProperties"] = False
cpm_tools.append(format_tool)
return cpm_tools
def get_cpm_function_call():
with open(save_react_qa_json, "r", encoding="utf-8") as file:
# 将json文件内容解析为Python对象
react_qa = json.load(file)
cpm_tool = switch_cpm_tool(tools)
tokenizer = AutoTokenizer.from_pretrained(cpm3_path, trust_remote_code=True)
cpm_fc_train_data = []
for react in react_qa:
messages = [
{
"role": "system",
"content": "You are a helpful customer support assistant. Use the supplied tools to assist the user.",
}
]
query = react["input"].split("Question: ")[-1]
print(query)
react_str = list(react.values())[-1]
Thought1, Action, Action_Input, Observation, Thought2, Final_Answer = split_react_data(
react_str
)
if (
Thought1
and Action
and Action_Input
and Observation
and Thought2
and Final_Answer
):
messages.append({"role": "user", "content": query})
prompt = tokenizer.apply_chat_template(
messages, tools=cpm_tool, tokenize=False, add_generation_prompt=True
)
cpm_thought1 = "<|thought_start|>\n{}\n<|thought_end|>".format(Thought1)
cpm_function_and_param = "\n<|tool_call_start|>\n```python\n{}({})\n```\n<|tool_call_end|>".format(
Action, re.sub(": ", "=", Action_Input)
)
cpm_fc_train_data.append(
[
{"role": "system", "content": prompt.split("<|im_end|>")[0][19:]},
{"role": "user", "content": query},
{
"role": "assistant",
"content": cpm_thought1 + cpm_function_and_param,
},
]
)
cpm_response = "<|im_end|>\n<|im_start|>tool\n{}<|im_end|>\n<|im_start|>assistant\n".format(
Observation
)
cpm_thought2 = "<|thought_start|>\n{}\n<|thought_end|>\n".format(Thought2)
cpm_answer = Final_Answer
cpm_fc_train_data.append(
[
{"role": "system", "content": prompt.split("<|im_end|>")[0][19:]},
{
"role": "user",
"content": query
+ "<|im_start|>assistant\n"
+ cpm_function_and_param
+ cpm_response,
},
{"role": "assistant", "content": cpm_thought2 + cpm_answer},
]
)
else:
print(1)
continue
# cpm_fc_train_data.append({"role":"system",'content':prompt+cpm_function_and_param+cpm_response,'role':'assistant','content':cpm_thought2+cpm_answer})
save_cpm3_data(cpm3_data_save_path, cpm_fc_train_data)
print(
"{}条cpm3 function call数据已经保存到{}".format(
len(cpm_fc_train_data), cpm3_data_save_path
)
)