-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStatistics_prj13.r
53 lines (37 loc) · 1.53 KB
/
Statistics_prj13.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
library(readr)
library(readxl)
library(magrittr)
library(arsenal)
library(dplyr)
library(energy)
# import data
Substracted_Dataset <- read_csv("Substracted Dataset.csv") %>% as.data.frame()
stategundata2 <- read_excel("stategundata2.xlsx")
stategundata <- stategundata2[,c(2,5)] %>% as.data.frame()
str(Substracted_Dataset); str(stategundata)
plotdata <- round(Substracted_Dataset,1)
colnames(plotdata) <- c("homicideRate", "bradyScore")
paperdata <- round(stategundata2[,c(2,5)],1)
colnames(paperdata) <- c("homicideRate", "bradyScore")
paperdata <- arrange(paperdata, homicideRate)
# compare two data sets
summary(plotdata)
summary(paperdata)
m <- par(mfrow = c(1,2))
plot(plotdata, pch = 2, col = "blue",
xlab = "Homicide rate", ylab = "Brady score", main = "Plotdata")
plot(paperdata, pch = 3, col = "red",
xlab = "Homicide rate", ylab = "Brady score", main = "Paperdata")
par(m)
all_equal(plotdata,paperdata)
summary(comparedf(plotdata,paperdata, tol.num.val = 1))[6:7]
# Analyze the data (paper data) using Pearson's correlation
cor(paperdata$homicideRate, paperdata$bradyScore, method = "pearson")
cor.test(paperdata$homicideRate, paperdata$bradyScore, method = "pearson")
# Analyze the data using distance correlation
dcor(paperdata$homicideRate, paperdata$bradyScore)
dcorT.test(paperdata$homicideRate, paperdata$bradyScore)
# #?
# plot(paperdata,pch = 8, xlab = "Homicide rate", ylab = "Brady score")
# abline(b = .0655, a = .45956, col = "blue", lty = 3, lwd = 2)
# abline(b = -0.03, a = -1.052, col = "red", lty = 2, lwd = 2)