forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.py
215 lines (171 loc) · 5.69 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Data batchers for data described in ..//data_prep/README.md."""
import glob
import random
import struct
import sys
from tensorflow.core.example import example_pb2
# Special tokens
PARAGRAPH_START = '<p>'
PARAGRAPH_END = '</p>'
SENTENCE_START = '<s>'
SENTENCE_END = '</s>'
UNKNOWN_TOKEN = '<UNK>'
PAD_TOKEN = '<PAD>'
DOCUMENT_START = '<d>'
DOCUMENT_END = '</d>'
class Vocab(object):
"""Vocabulary class for mapping words and ids."""
def __init__(self, vocab_file, max_size):
self._word_to_id = {}
self._id_to_word = {}
self._count = 0
with open(vocab_file, 'r') as vocab_f:
for line in vocab_f:
pieces = line.split()
if len(pieces) != 2:
sys.stderr.write('Bad line: %s\n' % line)
continue
if pieces[0] in self._word_to_id:
raise ValueError('Duplicated word: %s.' % pieces[0])
self._word_to_id[pieces[0]] = self._count
self._id_to_word[self._count] = pieces[0]
self._count += 1
if self._count > max_size:
raise ValueError('Too many words: >%d.' % max_size)
def CheckVocab(self, word):
if word not in self._word_to_id:
return None
return self._word_to_id[word]
def WordToId(self, word):
if word not in self._word_to_id:
return self._word_to_id[UNKNOWN_TOKEN]
return self._word_to_id[word]
def IdToWord(self, word_id):
if word_id not in self._id_to_word:
raise ValueError('id not found in vocab: %d.' % word_id)
return self._id_to_word[word_id]
def NumIds(self):
return self._count
def ExampleGen(data_path, num_epochs=None):
"""Generates tf.Examples from path of data files.
Binary data format: <length><blob>. <length> represents the byte size
of <blob>. <blob> is serialized tf.Example proto. The tf.Example contains
the tokenized article text and summary.
Args:
data_path: path to tf.Example data files.
num_epochs: Number of times to go through the data. None means infinite.
Yields:
Deserialized tf.Example.
If there are multiple files specified, they accessed in a random order.
"""
epoch = 0
while True:
if num_epochs is not None and epoch >= num_epochs:
break
filelist = glob.glob(data_path)
assert filelist, 'Empty filelist.'
random.shuffle(filelist)
for f in filelist:
reader = open(f, 'rb')
while True:
len_bytes = reader.read(8)
if not len_bytes: break
str_len = struct.unpack('q', len_bytes)[0]
example_str = struct.unpack('%ds' % str_len, reader.read(str_len))[0]
yield example_pb2.Example.FromString(example_str)
epoch += 1
def Pad(ids, pad_id, length):
"""Pad or trim list to len length.
Args:
ids: list of ints to pad
pad_id: what to pad with
length: length to pad or trim to
Returns:
ids trimmed or padded with pad_id
"""
assert pad_id is not None
assert length is not None
if len(ids) < length:
a = [pad_id] * (length - len(ids))
return ids + a
else:
return ids[:length]
def GetWordIds(text, vocab, pad_len=None, pad_id=None):
"""Get ids corresponding to words in text.
Assumes tokens separated by space.
Args:
text: a string
vocab: TextVocabularyFile object
pad_len: int, length to pad to
pad_id: int, word id for pad symbol
Returns:
A list of ints representing word ids.
"""
ids = []
for w in text.split():
i = vocab.WordToId(w)
if i >= 0:
ids.append(i)
else:
ids.append(vocab.WordToId(UNKNOWN_TOKEN))
if pad_len is not None:
return Pad(ids, pad_id, pad_len)
return ids
def Ids2Words(ids_list, vocab):
"""Get words from ids.
Args:
ids_list: list of int32
vocab: TextVocabulary object
Returns:
List of words corresponding to ids.
"""
assert isinstance(ids_list, list), '%s is not a list' % ids_list
return [vocab.IdToWord(i) for i in ids_list]
def SnippetGen(text, start_tok, end_tok, inclusive=True):
"""Generates consecutive snippets between start and end tokens.
Args:
text: a string
start_tok: a string denoting the start of snippets
end_tok: a string denoting the end of snippets
inclusive: Whether include the tokens in the returned snippets.
Yields:
String snippets
"""
cur = 0
while True:
try:
start_p = text.index(start_tok, cur)
end_p = text.index(end_tok, start_p + 1)
cur = end_p + len(end_tok)
if inclusive:
yield text[start_p:cur]
else:
yield text[start_p+len(start_tok):end_p]
except ValueError as e:
raise StopIteration('no more snippets in text: %s' % e)
def GetExFeatureText(ex, key):
return ex.features.feature[key].bytes_list.value[0]
def ToSentences(paragraph, include_token=True):
"""Takes tokens of a paragraph and returns list of sentences.
Args:
paragraph: string, text of paragraph
include_token: Whether include the sentence separation tokens result.
Returns:
List of sentence strings.
"""
s_gen = SnippetGen(paragraph, SENTENCE_START, SENTENCE_END, include_token)
return [s for s in s_gen]