Skip to content

Latest commit

 

History

History
109 lines (78 loc) · 3.05 KB

README.md

File metadata and controls

109 lines (78 loc) · 3.05 KB

Algorithms and Data structure implementation using python

  • List
  • Linked List
                     			Big O growth
		 O(1)<O(log n) < O(sqrt n) < O(n) < O(n log n) < O(n^2) < O(a^n) < O(n!)
		 
Growth of several common time complexities, and thus help you judge if your algorithm is fast enough to get  Accepted  
		 Length Of Input(N)	 Worst Accepted Algorithm	   
		   <= [10..11]			O(N!), O(N^6)  
		   <= [15..18]			O(2^N * N^2)  
		   <= [18..22]			O(2^N * N)  
		   <= 100			O(N^4)  
		   <= 400			O(N^3)  
		   <= 2K			O(N^2 * log N)  
		   <= 10K			O(N^2)  
		   <= 1M			O(N * log N)  
		   <= 100M			O(N), O(log N), O(1)  
Rule of Thumb:
If there are T test cases multiply it to in left side while
Doing the analysis

1. N <= 10^6 -> O(N)/O(N log N)
2. N <= 10^5 -> O(N log^2 N)
3. N <= 10^4 -> O(N^2)/O(N log^2 N)
4. N <= 1000 -> O(N^2)/O(N^2 log N)
5. N <= 300/400-> O(N^3)
6. N <= 200 -> O(2^N))
7. N <= 15 -> O(N^2 2^N)
8. N <= 10 -> O(N!)

A computer can roughtly do 10^8 operations per second.

Some famous Sorting algorithms:-
	-Bubble Sort
	-Selection Sort
	-Insertion Sort
	-Merge Sort
	-Quick Sort
	-Counting Sort
	-Radix Sort
	-Heap Sort
	
	NOTE : REMOVE O(Big Oh) by Ω in best case and by θ(theta) in average case, the O is used
	I have used it in such way for easy memorization of table
	
                    Ω	        θ               O
                Best Case   Average Case    Worst Case
Bubble Sort     O(N)          O(N^2)          O(N^2)
Insertion Sort  O(N)          O(N^2)          O(N^2)
Selection Sort  O(N^2)        O(N^2)          O(N^2)
Merge Sort      O(N log N)  O(N log N)        O(N log N)

Python pre defined helper functions

- ord("a") returns 97 , the ord function takes a string value and returns the ASCII value of character.
- "a,bcd".find(",") => output 1
- "a" < "z", return true lexicographically comparsion
- ["z", "w", "p"].sort() , return the array in lexicographically sorted order. ["p", "w", "z"]
- '{:032b}'.format(3) , return '00000000000000000000000000000011' 32 bit binary string.
- sort() func has 2 parameters
	- reverse=True will return list sorted in decreasing order
	- key will take a function as input and on the basis of return value it will sort it.

15 Leetcode articles I wish I'd read sooner.