Skip to content

Latest commit

 

History

History
83 lines (52 loc) · 2.31 KB

File metadata and controls

83 lines (52 loc) · 2.31 KB

resnext101_64x4d_imagenet

Module Name resnext101_64x4d_imagenet
Category image classification
Network ResNeXt
Dataset ImageNet-2012
Fine-tuning supported or not No
Module Size 322MB
Latest update date -
Data indicators -

I.Basic Information

  • Module Introduction

    • ResNeXt is proposed by UC San Diego and Facebook AI Research in 2017. This module is based on resnext101_64x4d, which denotes 101 layers ,64 branches,and the number of input and output branch channels is 4 in the network. It is weak-supervised trained on billions of socail images, finetuned on ImageNet-2012 dataset, and can predict an image of size 2242243.

II.Installation

III.Module API Prediction

  • 1、Command line Prediction

    • $ hub run resnext101_64x4d_imagenet --input_path "/PATH/TO/IMAGE"
    • If you want to call the Hub module through the command line, please refer to: PaddleHub Command Line Instruction
  • 2、Prediction Code Example

    • import paddlehub as hub
      import cv2
      
      classifier = hub.Module(name="resnext101_64x4d_imagenet")
      test_img_path = "/PATH/TO/IMAGE"
      input_dict = {"image": [test_img_path]}
      result = classifier.classification(data=input_dict)
  • 3、API

    • def classification(data)
      • classification API.

      • Parameters

        • data (dict): key is "image", value is a list of image paths
      • Return

        • result(list[dict]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability

IV.Release Note

  • 1.0.0

    First release

    • $ hub install resnext101_64x4d_imagenet==1.0.0