forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_feed.py
301 lines (273 loc) · 11.6 KB
/
data_feed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import os
import base64
import cv2
import numpy as np
from PIL import Image, ImageDraw
import paddle.fluid as fluid
def create_inputs(im, im_info):
"""generate input for different model type
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
Returns:
inputs (dict): input of model
"""
inputs = {}
inputs['image'] = im
origin_shape = list(im_info['origin_shape'])
resize_shape = list(im_info['resize_shape'])
pad_shape = list(im_info['pad_shape']) if im_info['pad_shape'] is not None else list(im_info['resize_shape'])
scale_x, scale_y = im_info['scale']
scale = scale_x
im_info = np.array([resize_shape + [scale]]).astype('float32')
inputs['im_info'] = im_info
return inputs
def visualize_box_mask(im, results, labels=None, mask_resolution=14, threshold=0.5):
"""
Args:
im (str/np.ndarray): path of image/np.ndarray read by cv2
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
MaskRCNN's results include 'masks': np.ndarray:
shape:[N, class_num, mask_resolution, mask_resolution]
labels (list): labels:['class1', ..., 'classn']
mask_resolution (int): shape of a mask is:[mask_resolution, mask_resolution]
threshold (float): Threshold of score.
Returns:
im (PIL.Image.Image): visualized image
"""
if not labels:
labels = [
'background', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat',
'traffic light', 'fire', 'hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse',
'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair',
'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard',
'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
'teddy bear', 'hair drier', 'toothbrush'
]
if isinstance(im, str):
im = Image.open(im).convert('RGB')
else:
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
im = Image.fromarray(im)
if 'masks' in results and 'boxes' in results:
im = draw_mask(im, results['boxes'], results['masks'], labels, resolution=mask_resolution)
if 'boxes' in results:
im = draw_box(im, results['boxes'], labels)
if 'segm' in results:
im = draw_segm(im, results['segm'], results['label'], results['score'], labels, threshold=threshold)
return im
def get_color_map_list(num_classes):
"""
Args:
num_classes (int): number of class
Returns:
color_map (list): RGB color list
"""
color_map = num_classes * [0, 0, 0]
for i in range(0, num_classes):
j = 0
lab = i
while lab:
color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
j += 1
lab >>= 3
color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
return color_map
def expand_boxes(boxes, scale=0.0):
"""
Args:
boxes (np.ndarray): shape:[N,4], N:number of box,
matix element:[x_min, y_min, x_max, y_max]
scale (float): scale of boxes
Returns:
boxes_exp (np.ndarray): expanded boxes
"""
w_half = (boxes[:, 2] - boxes[:, 0]) * .5
h_half = (boxes[:, 3] - boxes[:, 1]) * .5
x_c = (boxes[:, 2] + boxes[:, 0]) * .5
y_c = (boxes[:, 3] + boxes[:, 1]) * .5
w_half *= scale
h_half *= scale
boxes_exp = np.zeros(boxes.shape)
boxes_exp[:, 0] = x_c - w_half
boxes_exp[:, 2] = x_c + w_half
boxes_exp[:, 1] = y_c - h_half
boxes_exp[:, 3] = y_c + h_half
return boxes_exp
def draw_mask(im, np_boxes, np_masks, labels, resolution=14, threshold=0.5):
"""
Args:
im (PIL.Image.Image): PIL image
np_boxes (np.ndarray): shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
np_masks (np.ndarray): shape:[N, class_num, resolution, resolution]
labels (list): labels:['class1', ..., 'classn']
resolution (int): shape of a mask is:[resolution, resolution]
threshold (float): threshold of mask
Returns:
im (PIL.Image.Image): visualized image
"""
color_list = get_color_map_list(len(labels))
scale = (resolution + 2.0) / resolution
im_w, im_h = im.size
w_ratio = 0.4
alpha = 0.7
im = np.array(im).astype('float32')
rects = np_boxes[:, 2:]
expand_rects = expand_boxes(rects, scale)
expand_rects = expand_rects.astype(np.int32)
clsid_scores = np_boxes[:, 0:2]
padded_mask = np.zeros((resolution + 2, resolution + 2), dtype=np.float32)
clsid2color = {}
for idx in range(len(np_boxes)):
clsid, score = clsid_scores[idx].tolist()
clsid = int(clsid)
xmin, ymin, xmax, ymax = expand_rects[idx].tolist()
w = xmax - xmin + 1
h = ymax - ymin + 1
w = np.maximum(w, 1)
h = np.maximum(h, 1)
padded_mask[1:-1, 1:-1] = np_masks[idx, int(clsid), :, :]
resized_mask = cv2.resize(padded_mask, (w, h))
resized_mask = np.array(resized_mask > threshold, dtype=np.uint8)
x0 = min(max(xmin, 0), im_w)
x1 = min(max(xmax + 1, 0), im_w)
y0 = min(max(ymin, 0), im_h)
y1 = min(max(ymax + 1, 0), im_h)
im_mask = np.zeros((im_h, im_w), dtype=np.uint8)
im_mask[y0:y1, x0:x1] = resized_mask[(y0 - ymin):(y1 - ymin), (x0 - xmin):(x1 - xmin)]
if clsid not in clsid2color:
clsid2color[clsid] = color_list[clsid]
color_mask = clsid2color[clsid]
for c in range(3):
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
idx = np.nonzero(im_mask)
color_mask = np.array(color_mask)
im[idx[0], idx[1], :] *= 1.0 - alpha
im[idx[0], idx[1], :] += alpha * color_mask
return Image.fromarray(im.astype('uint8'))
def draw_box(im, np_boxes, labels):
"""
Args:
im (PIL.Image.Image): PIL image
np_boxes (np.ndarray): shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
labels (list): labels:['class1', ..., 'classn']
Returns:
im (PIL.Image.Image): visualized image
"""
draw_thickness = min(im.size) // 320
draw = ImageDraw.Draw(im)
clsid2color = {}
color_list = get_color_map_list(len(labels))
for dt in np_boxes:
clsid, bbox, score = int(dt[0]), dt[2:], dt[1]
xmin, ymin, xmax, ymax = bbox
w = xmax - xmin
h = ymax - ymin
if clsid not in clsid2color:
clsid2color[clsid] = color_list[clsid]
color = tuple(clsid2color[clsid])
# draw bbox
draw.line([(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin), (xmin, ymin)],
width=draw_thickness,
fill=color)
# draw label
text = "{} {:.4f}".format(labels[clsid], score)
tw, th = draw.textsize(text)
draw.rectangle([(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
return im
def draw_segm(im, np_segms, np_label, np_score, labels, threshold=0.5, alpha=0.7):
"""
Draw segmentation on image.
"""
mask_color_id = 0
w_ratio = .4
color_list = get_color_map_list(len(labels))
im = np.array(im).astype('float32')
clsid2color = {}
np_segms = np_segms.astype(np.uint8)
for i in range(np_segms.shape[0]):
mask, score, clsid = np_segms[i], np_score[i], np_label[i] + 1
if score < threshold:
continue
if clsid not in clsid2color:
clsid2color[clsid] = color_list[clsid]
color_mask = clsid2color[clsid]
for c in range(3):
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
idx = np.nonzero(mask)
color_mask = np.array(color_mask)
im[idx[0], idx[1], :] *= 1.0 - alpha
im[idx[0], idx[1], :] += alpha * color_mask
sum_x = np.sum(mask, axis=0)
x = np.where(sum_x > 0.5)[0]
sum_y = np.sum(mask, axis=1)
y = np.where(sum_y > 0.5)[0]
x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1]
cv2.rectangle(im, (x0, y0), (x1, y1), tuple(color_mask.astype('int32').tolist()), 1)
bbox_text = '%s %.2f' % (labels[clsid], score)
t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0]
cv2.rectangle(im, (x0, y0), (x0 + t_size[0], y0 - t_size[1] - 3), tuple(color_mask.astype('int32').tolist()),
-1)
cv2.putText(im, bbox_text, (x0, y0 - 2), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), 1, lineType=cv2.LINE_AA)
return Image.fromarray(im.astype('uint8'))
def load_predictor(model_dir, run_mode='fluid', batch_size=1, use_gpu=False, min_subgraph_size=3):
"""set AnalysisConfig, generate AnalysisPredictor
Args:
model_dir (str): root path of __model__ and __params__
use_gpu (bool): whether use gpu
Returns:
predictor (PaddlePredictor): AnalysisPredictor
Raises:
ValueError: predict by TensorRT need use_gpu == True.
"""
if not use_gpu and not run_mode == 'fluid':
raise ValueError("Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}".format(
run_mode, use_gpu))
if run_mode == 'trt_int8':
raise ValueError("TensorRT int8 mode is not supported now, " "please use trt_fp32 or trt_fp16 instead.")
precision_map = {
'trt_int8': fluid.core.AnalysisConfig.Precision.Int8,
'trt_fp32': fluid.core.AnalysisConfig.Precision.Float32,
'trt_fp16': fluid.core.AnalysisConfig.Precision.Half
}
config = fluid.core.AnalysisConfig(os.path.join(model_dir, '__model__'), os.path.join(model_dir, '__params__'))
if use_gpu:
# initial GPU memory(M), device ID
config.enable_use_gpu(100, 0)
# optimize graph and fuse op
config.switch_ir_optim(True)
else:
config.disable_gpu()
if run_mode in precision_map.keys():
config.enable_tensorrt_engine(
workspace_size=1 << 10,
max_batch_size=batch_size,
min_subgraph_size=min_subgraph_size,
precision_mode=precision_map[run_mode],
use_static=False,
use_calib_mode=False)
# disable print log when predict
config.disable_glog_info()
# enable shared memory
config.enable_memory_optim()
# disable feed, fetch OP, needed by zero_copy_run
config.switch_use_feed_fetch_ops(False)
predictor = fluid.core.create_paddle_predictor(config)
return predictor
def cv2_to_base64(image: np.ndarray):
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
def base64_to_cv2(b64str: str):
data = base64.b64decode(b64str.encode('utf8'))
data = np.fromstring(data, np.uint8)
data = cv2.imdecode(data, cv2.IMREAD_COLOR)
return data