forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodule.py
166 lines (145 loc) · 6.43 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import base64
from functools import reduce
from typing import Union
import cv2
import numpy as np
from paddlehub.module.module import moduleinfo, serving
import solov2.processor as P
import solov2.data_feed as D
class Detector(object):
"""
Args:
min_subgraph_size (int): number of tensorRT graphs.
use_gpu (bool): whether use gpu
threshold (float): threshold to reserve the result for output.
"""
def __init__(self, min_subgraph_size: int = 60, use_gpu=False, threshold: float = 0.5):
model_dir = os.path.join(self.directory, 'solov2_r50_fpn_1x')
self.predictor = D.load_predictor(model_dir, min_subgraph_size=min_subgraph_size, use_gpu=use_gpu)
self.compose = [
P.Resize(max_size=1333),
P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
P.Permute(),
P.PadStride(stride=32)
]
def transform(self, im: Union[str, np.ndarray]):
im, im_info = P.preprocess(im, self.compose)
inputs = D.create_inputs(im, im_info)
return inputs, im_info
def postprocess(self, np_boxes: np.ndarray, np_masks: np.ndarray, im_info: dict, threshold: float = 0.5):
# postprocess output of predictor
results = {}
expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1)
np_boxes = np_boxes[expect_boxes, :]
for box in np_boxes:
print('class_id:{:d}, confidence:{:.4f},'
'left_top:[{:.2f},{:.2f}],'
' right_bottom:[{:.2f},{:.2f}]'.format(int(box[0]), box[1], box[2], box[3], box[4], box[5]))
results['boxes'] = np_boxes
if np_masks is not None:
np_masks = np_masks[expect_boxes, :, :, :]
results['masks'] = np_masks
return results
def predict(self, image: Union[str, np.ndarray], threshold: float = 0.5):
'''
Args:
image (str/np.ndarray): path of image/ np.ndarray read by cv2
threshold (float): threshold of predicted box' score
Returns:
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
MaskRCNN's results include 'masks': np.ndarray:
shape:[N, class_num, mask_resolution, mask_resolution]
'''
inputs, im_info = self.transform(image)
np_boxes, np_masks = None, None
input_names = self.predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_tensor(input_names[i])
input_tensor.copy_from_cpu(inputs[input_names[i]])
self.predictor.zero_copy_run()
output_names = self.predictor.get_output_names()
boxes_tensor = self.predictor.get_output_tensor(output_names[0])
np_boxes = boxes_tensor.copy_to_cpu()
# do not perform postprocess in benchmark mode
results = []
if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
print('[WARNNING] No object detected.')
results = {'boxes': np.array([])}
else:
results = self.postprocess(np_boxes, np_masks, im_info, threshold=threshold)
return results
@moduleinfo(
name="solov2",
type="CV/instance_segmentation",
author="paddlepaddle",
author_email="",
summary="solov2 is a detection model, this module is trained with COCO dataset.",
version="1.0.0")
class DetectorSOLOv2(Detector):
"""
Args:
use_gpu (bool): whether use gpu
threshold (float): threshold to reserve the result for output.
"""
def __init__(self, use_gpu: bool = False, threshold: float = 0.5):
super(DetectorSOLOv2, self).__init__(use_gpu=use_gpu, threshold=threshold)
def predict(self,
image: Union[str, np.ndarray],
threshold: float = 0.5,
visualization: bool = False,
save_dir: str = 'solov2_result'):
'''
Args:
image (str/np.ndarray): path of image/ np.ndarray read by cv2
threshold (float): threshold of predicted box' score
visualization (bool): Whether to save visualization result.
save_dir (str): save path.
'''
inputs, im_info = self.transform(image)
np_label, np_score, np_segms = None, None, None
input_names = self.predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_tensor(input_names[i])
input_tensor.copy_from_cpu(inputs[input_names[i]])
self.predictor.zero_copy_run()
output_names = self.predictor.get_output_names()
np_label = self.predictor.get_output_tensor(output_names[0]).copy_to_cpu()
np_score = self.predictor.get_output_tensor(output_names[1]).copy_to_cpu()
np_segms = self.predictor.get_output_tensor(output_names[2]).copy_to_cpu()
output = dict(segm=np_segms, label=np_label, score=np_score)
if visualization:
if not os.path.exists(save_dir):
os.makedirs(save_dir)
image = D.visualize_box_mask(im=image, results=output)
name = str(time.time()) + '.png'
save_path = os.path.join(save_dir, name)
image.save(save_path)
return output
@serving
def serving_method(self, images: list, **kwargs):
"""
Run as a service.
"""
images_decode = D.base64_to_cv2(images[0])
results = self.predict(image=images_decode, **kwargs)
final = {}
final['segm'] = base64.b64encode(results['segm']).decode('utf8')
final['label'] = base64.b64encode(results['label']).decode('utf8')
final['score'] = base64.b64encode(results['score']).decode('utf8')
return final